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Stem cells play a central role in the normal growth and development of animals and human having the
capacity of self renewal and the potential to differentiate into one or more cell types depending on the in
vivo signals. Mesenchymal stem cells (MSC) have generated a great amount of interest over the past
decade as a novel therapeutic potential for a variety of diseases. Presently MSC based clinical trials
have been conducted in many kinds of pathological conditions, like spinal cord injury, traumatic brain
injury, Parkinson disease, stroke, bone healing, cardiac repair, tendon healing etc. Many completed
trials demonstrated the safety and efficacy. Clinical application of MSC are mainly attributed to their
important four biological properties, i.e. ability to home to sites of inflammation following tissue injury;
to differentiate into various cell types; to secrete trophic factors capable of stimulating recovery of
injured cells and inhibiting inflammation and to perform immunomodulatory functions. Furthermore,
genetic modification of MSCs has provided prospects for clinical use in many diseases. Here we are
highlighting the importance of mesenchymal stem cells in treatment of different disease conditions.
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Stem cells
Special primal structures in the body with
an extraordinary ability to self-renew, the
ability to differentiate into a specific cell
type, and clonogenic ability (Evans and
Kaufman, 1981; Beltrami et al., 2003 and
Nagy et al., 2005). Traditionally, a
hierarchical system based on developmental
potential has been employed for the

classification of vertebrate stem cells. There
are two types of stem cells as embryonic
and adult stem cells. The embryonic stem
cells are further classified as totipotent and
pluripotent stem cells, while adult stem cells
are classified as unipotent and multipotent
stem cells (Leeb et al., 2010). Embryonic
stem cells (ESCs) derived from the inner
cell mass of the blastocyst possess the



greatest developmental potential with the
ability to generate all differentiated cell
types in the body, and are termed
pluripotent. Whereas, tissue-committed
stem cells are restricted to producing cell
types found within that tissue, and are
termed multipotent.

Totipotent stem cells
Totipotency is the ability of a single cell to
divide and differentiate into an entire
organism. In mammals (placental animals)
totipotent stem cells have the potential to
become any type of cells in the adult body
and/or cells of the extra embryonic
membrane. Only the zygote and the first
cleavage stage blastomeres are totipotent
in nature (Amabile and Meissner, 2009).

Pluripotent stem cells
Pluripotent stem cells can develop into any
of the three major tissue types namely
endoderm, ectoderm and mesoderm, but
cannot contribute to cells of extra-
embryonic membranes. They exist in vivo
only for a short period of time that includes
later blastomeres, inner cell mass(ICM)
cells of the blastocyst and the ICM derived
epiblast. Under appropriate culture
conditions explanted ICM cells give rise to
pluripotent embryonic stem (ES) cells.
Induced pluripotent stem cells (iPSCs) are
adult cells that have been genetically
reprogrammed to an embryonic stem cells
like state and it express genes important for
maintaining the properties of embryonic
stem cells. Takahashi and Yamanaka (2006)
reported that iPSCs can be generated from

mouse embryonic fibroblasts (MEF) and
adult mouse tail-tip fibroblasts by the
retrovirus-mediated transfection of four
transcription factors, namely Oct3/4, Sox2,
c-Myc, and Klf4. The iPSCs are useful tools
for drug development and modeling of
diseases, viruses are currently used to
introduce the reprogramming factors into
adult cells.

Multipotent stem cells
These are small number of partially
undifferentiated stem cells present in the
adult tissue and are capable of forming a
limited number of specialized cell types,
typically those of a closely related family
of cells. They are less plastic and more
differentiated stem cells. Multipotent stem
cells are available from different organs in
the body. This offspring of pluripotent cells
becomes progenitor of cell line such as
blood cells, skin cells, neural cells etc (Leeb
et al., 2010).

Unipotent stem cells
Stem cells which are available in the
specific part of an organ like retina, striated
muscle,  dermal papillae are called
unipotent. These cells on development
cannot produce any cell type other than
itself, but have the ability to self renew, such
as limbic stem cells that help in repair of
retina (Guan et al., 2006).

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are
multipotent cells able to differentiate into
several mesenchymal lineages, classically
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derived from bone marrow (Azouna et al.,
2012). MSCs represent a rare population ~
0.001 to 0.01% of the total nucleated cells
in bone marrow (BM) (Pittenger et al., 1999
and Le Blanc and Pittenger, 2005), giving
rise to adipocytes, osteoblasts,
chondrocytes, and vascular smooth muscle
(VSM) like hematopoietic supportive
stromal cells (Caplan, 1991 and Prockop,
1997). Evidence for the existence of a cell
population within the bone marrow that
produced non-hematopoietic progeny
emerged in the mid-1960 with the
pioneering work of Friedenstein and
colleagues (Friedenstein et al., 1966 and
Friedenstein et al., 1970). Thereafter
numbers of independent studies were
carried out by different researchers, who
employed the isolation and culture
techniques of Friedenstein et al. (1987) and
together these studies demonstrated that
MSCs were multipotential and
differentiated into cells of the mesodermal
lineage, including osteoblasts (Friedenstein
et al., 1987), chondroblasts (Mackay et al.,
1998), adipocytes (Beresford et al., 1992)
and myoblasts (Prockop, 1997). The
marrow stromal stem cells concept was
proposed in 1988 by Owen and Friedenstein
(Owen and Friedenstein, 1988), whereas the
currently popular term “MSC” was later
coined by Caplan (Caplan, 1991). All these
initial studies have paved the way for the
development of the field of MSC research
which we know today. Exponential increase
in scientific and clinical research in the field
of MSC was observed since then. It is now
generally recognized that MSCs possess the

in vitro characteristics of stem cells with
the ability to proliferate, symmetrically
divide,  and produce multi-lineage
mesodermal derivatives, making MSCs an
attractive candidate for use in potential
cellular therapies. In addition, MSCs exhibit
further promising qualities for regenerative
medicine, including relatively easy isolation
from small aspirates of BM, as well as
relatively easy expansion in culture with
low tumorigenicity and teratoma formation.

MSCs have been reported to display
immunosuppressive properties that are
advantageous  for allogeneic
transplantation, and in ideal settings,
autologous transplantation is also possible.
Subpopulations of MSCs have also been
reported to be capable of differentiation to
non-mesodermal lineages, indicating the
potential application of MSCs in a wider
range of diseases. Mesenchymal stem cells
(MSCs) have been referred to other names
such as colony-forming fibroblastic cells
(Friedenstein et al., 1976), BM stromal
stem cells (Bianco et al.,  2001)
mesenchymal progenitor cells (Sun, et al.,
2003) and BM stromal cells (Prockop,
1997).

International Society for Cellular Therapy
has proposed three minimal criteria for
defining human MSCs (hMSCs) (Dominici
et al., 2006), were; 1) MSCs must be
adherent to plastic when cultured in
standard conditions; 2) MSC populations
must express specific surface antigens
CD105, CD73 and CD90, but lack
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expression of haematopoietic surface
antigens, such as pan-leukocyte marker
CD45, primitive haematopoietic progenitor
and endothelial marker CD34, monocyte
and macrophage markers CD14 and
CD11b, B lymphocyte markers CD79á and
CD19, and human leukocyte antigen
(HLA)-DR molecules; and 3) MSCs must
exhibit multipotent differentiation potential
by differentiating to osteoblasts, adipocytes
and chondroblasts under standard in vitro
tissue culture-differentiating conditions
with confirmation of differentiation using
histochemical and immunohistochemical
staining (Dominici et al., 2006).

Sources of Mesenchymal stem cells
(MSCs)
These cells are characterized
morphologically by a small cell body with
a few long and thin cell processes. MSCs
which reside within the stromal
compartment of bone marrow were first
identified in the pioneering studies of
Friedenstein and colleagues in the 1970s
as cells that are capable of self-renewal and
possess multipotency (Friedenstein et al.,
1970). Besides from bone marrow, MSC-
like cells have been isolated from many
other organ and tissue including brain
(Uchida et al., 2000), skeletal muscle
(Williams et al., 1999), umbilical cord
blood (Erices et al., 2000 and Peters et al.,
2010), dental pulp (Gronthos et al., 2000),
adipose tissue (Zuk et al., 2001 and
Lopatina et al., 2011) and amniotic fluid
(Moorefield et al., 2011) etc. Bone marrow
derived MSCs have been successfully

isolated and expanded mostly from human
(Pittenger et al., 1999), rat (Yoshimura et
al., 2007), rabbit (Lapi et al., 2008), canine
(Yoshimura et al., 2007) and mouse (Peister
et al., 2004), but except in pig (Zeng et al.,
2006), now from domestic animals also
being isolated like from goat (Kumar et al.,
2013). The youngest, most primitive MSCs
can be obtained from the umbilical cord
tissues, namely Wharton’s Jelly and the
umbilical cord blood. However, the MSCs
are found in much higher concentration in
the Wharton’s Jelly compared to the
umbilical cord blood, which is a rich source
of hematopoeitic stem cells. The umbilical
cord MSCs have more primitive properties
than other adult MSCs obtained later in life,
which might make them a useful source of
MSCs for clinical applications (Fu et al.,
2006 and Wang et al., 2004). Today, BM
remains the principal source of MSCs in
studies investigating their potential use in
cell therapy.

Surface markers of MSCs
Considerable effort has been made on the
identification of specific surface markers
for selection, detection and testing of MSC
preparations.  It is widely accepted that bone
marrow derived MSCs (BM-MSC) express
SH2 (CD105),  H3/SH4 (CD73), integrin
b1 (CD29), CD44, Thy-1 (CD90), CD71,
vascular cell adhesion molecule-1 (CD106),
activated leukocyte cell adhesion molecule
(CD166), STRO-1, GD2, and melanoma
cell adhesion molecule (CD146)
(Haynesworth et al., 1992; Galmiche et al.,
1993; Sordi et al., 2005 and Sacchetti et
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al., 2007) and believed that BM-MSCs lack
expression of hematopoietic surface
molecules including CD45, CD34, CD14
or CD11b, CD79a, or CD19, and HLA-DR
(Dominici et al., 2006). However, recent
studies have implied that mouse BMMSCs
might express the hematopoietic surface
molecules, CD45 (Chen et al., 2007) and
CD34 (Copland et al., 2008).

Immuno- modulatory  effect  of  MSCs
MSCs possess remarkable
immunosuppressive properties and can
inhibit the proliferation and function of the
major immune cell populations, including
T cells, B cells and natural killer (NK) cells;
modulate the activities of dendritic cells
(DCs); and induce regulatory T cells both
in vivo and in vitro (Sotiropoulou et al.,
2006; Ryan et al., 2007 and Miller et al.,
2010). The in vivo immunomodulatory
properties of MSCs were first described in
a baboon model of skin transplantation
(Bartholomew et al., 2002). MSCs inhibit
T-cell proliferation stimulated by
polyclonal activators, cognate antigen, and
allogeneic mixed lymphocyte reaction
(Darlington et al., 2010). MSCs also inhibit
B-cell proliferation, expression of
chemokine receptors, differentiation and
production of IgM, IgG, and IgA (Corcione
et al., 2006). In acute (Zappia et al., 2005)
and chronic (Karussis et al., 2005 and
Gerdoni et al., 2007) experimental
autoimmune encephalomyelitis (EAE)
mice, intravenous MSC administration
ameliorated clinical manifestations, CNS
inflammatory infiltration, demyelination,

and axonal damage. The potent
immunomodulatory properties of MSCs are
particularly relevant for multiple sclerosis
(MS) (Uccelli et al., 2006 and Newman et
al., 2009). These unique properties make
MSCs ideal candidates for clinical
application as immunosuppressant.

Homing of MSCs
MSC have the tendency to home at the site
of injury. Homing is the term used when
cells are delivered to the site of injury. Most
of the time local delivery and homing of
cells are found beneficial due to interaction
with the host tissues, accompanied by the
secretion of trophic factors (Figueroa et al.,
2012). There are a number of factors like
cells age, culturing conditions, cell passage
number and the delivery method, which
influence the homing ability of MSCs to
the injured site. Freshly isolated MSCs will
have greater homing efficiency than the
cultured cells. Matrix metallo-proteases
(MMPs), the important proteases which are
involve in the cell migration also plays
important role in the MSCs migration (Ries
et al., 2007). The hypoxic condition of the
culturing environment influences the
expression of these MMPs (De Becker et
al., 2007). The next important factor is
delivery method via which the MSCs are
administered to the desired tissue. The most
convenient and feasible way of MSCs
transplantation is local injection to the site
of injury or near the site of injury which
provides more number of cells and
increases its functional capacity. The exact
mechanism of cell delivery is still unknown.
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Mesenchymal stem cells as cell therapy
MSCs have a promising future in the world
of cell therapy and the number of clinical
trials has been rising since the last decade.
Along with preclinical studies, MSCs have
been found to be convincing in the
treatment of many diseases (Wei et al.,
2013). Currently, there are more than 463
registered clinical trials in different clinical
phases, evaluating the potential of MSC-
based cell therapy throughout the world.
Among 463 registered trials, 264 trials are
in open status which is open for recruitment
whereas 199 trials are closed; out of which
106 studies are completed whereas the rest
are in active phases (Ullah et al., 2015).
Due to immunomodulatory properties,
MSCs have been used in many human
autoimmune disease clinical trials.
However, the exact mechanism by which
MSCs regulate the immune response is
unclear (Baker and Issacs, 2014). Although
the progress of clinical studies so far
registered is slow, but the efficient use of
MSCs in large clinical trials with upcoming
promising results have proven MSCs as
boon for regenerative medicine both in
human and animals and it hold great
promise for the future regenerative therapy
(Ullah et al., 2015).

Mesenchymal stem cells and
neuroprotective potential
Despite evidence showing that MSCs can
transdifferentiate into multiple cell types in
vitro and in vivo, the real contribution of
MSCs to tissue repair-through significant
engraftment and differentiation into

biologically and functionally relevant
tissue-specific cell types is still elusive
(Phinney and Prockop, 2007).
Experimental autoimmune encephalo
myelitis (EAE), a model for multiple
sclerosis, has been the first experimental
autoimmune disease successfully treated
with MSCs (Zappia et al., 2005). Several
lines of evidence suggest that, somehow,
MSCs have a direct effect on neural cells.
They have been shown to enhance
remyelination in vivo (Bai et al., 2009 and
Constantin et al., 2009), provide in vitro
soluble cues that influence fate
determination of neural cells (Rivera et al.,
2006 and Bai et al., 2009), display a potent
antioxidant effect in vivo (Lanza et al., 2009
and Ripoll et al., 2011) and display a
neuroprotective effect (Stemberger et al.,
2011) mediated by the release of anti
apoptotic molecules in vitro (Kemp et al.,
2010) and in vivo (Ohtaki et al., 2008).
Irrespective of these aspects, the current
view suggests that MSCs may exert their
neuroprotective effect at distance through
the release of trophic molecules, possibly
affecting microglia activation (Ohtaki et al.,
2008) and inducing local neurogenesis (Bai
et al., 2009 and Constantin et al., 2009).
MSC transplantation has shown great
promise in the treatment of many
neurological disorders including spinal cord
injury (McDonald et al., 2003), traumatic
brain injury (Reiss et al., 2002), Parkinson
disease (Bjorklund et al., 2003) and stroke
(Savitz, 2002).
Neural stem cells exist in the developing
and adult mammalian nervous system are
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capable of undergoing expansion and
differentiation into neurons, astrocytes, and
oligodendrocytes in vitro (Reynolds and
Weiss, 1992) and after transplantation in
vivo (Svendsen et al., 1997). Treatment
with MSCs appears to enhance functional
recovery in the absence of combinatorial
treatments. Studies with other stem cell
populations suggest that they antagonize the
negative effects of immune cells (Busch et
al., 2010) while MSCs appear to release
trophic factors that promote axonal
regeneration and may also enhance the
survival of damaged neurons (Cho et al.,
2009). Mesenchymal stem cells also release
signals that modulate host tissue responses.
Through the release of trophic factors
MSCs are capable of enhancing the
endogenous repair potential of many tissues
(Miller et al., 2010). Transplantation of
MSC in spinal cord injury of rabbit model
has shown the recovery in hind limb
paralysis (Kumar, 2013).

Cardiovascular diseases
For myocardial repair, cardiac cells
transplantation is a new strategy which is
now applied in animal models (Singh,
2013). MSCs are considered as good source
for cardiomyocytes differentiation.
However, in vivo occurrence of
cardiomyocytes differentiation is very rare
and in vitro differentiation is found effective
only from young cell sources (Noort et al.,
2010 and Ramkisoensing et al., 2011). The
systematic injection of BM-MSCs into
diseased rodent models partially
recompensed the infracted myocardium

(Nagaya et al., 2005). Although MSCs are
effective in myocardial infarction and
related problems, but still cell retentivity
in the heart is rapidly decreased, after 4 h
of cells injection only 10% and after 24 h it
was found approximately 1% cell retention
(Freyman et al., 2006 and Van Der Spoel
et al., 2011). Following this study, Roura
et al. (2012) reported that UCB-MSCs
retained for several weeks in acute
myocardial infarction mice, proliferated
early and then differentiated into
endothelial lineage. Most recently,
transplantation of UCB-MSCs into
myocardial infarction animal model along
with fibronectin-immobilized
polycaprolactone nanofibres were found
very effective (Kang et al., 2014).

Tendons and ligaments
Tendons and ligaments connects muscle-
to-bone and bone-to-bone, respectively,
they share a similar hierarchical structure
of collagen fibers and resulting mechanical
properties. The interface between tendon,
ligament and bone are otherwise
indistinguishable, although a large degree
of variability exists depending on the
location of the attachment site. Tendons are
poorly vascularized, are relatively acellular,
and have limited potential for regeneration
(Avella et al., 2009). Injuries to tendon and
ligaments are common and are traditionally
classified as either acute ruptures or chronic
degenerative changes (Benjamin et al.,
2002). Kannus and Josza reported that
nearly all (97%) of spontaneously ruptured
tendons showed histopathological changes
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indicative of chronic tendon degeneration
(Kannus and Jozsa, 1991). Likewise,
acutely ruptured tendons are significantly
more degenerated than tendinopathic
tendons (Tallon et al., 2001). These tissues
heal with inferior ‘scar’-type tissue, with
the risk of subsequent rupture at the repair
site or formation of fibrous adhesions.

MSCs have emerged as the gold standard
for cellular therapies in musculoskeletal
diseases (Tuan et al., 2003). MSCs are
capable of differentiating into tenocytes,
chondrocytes, and osteocytes (Awad et al.,
1999; Tuan et al., 2003 and Kuo and Tuan,
2008), thereby potentially aiding in
restoration of the native structure of the
healing tissues. Beyond differentiating into
site-appropriate epithelial lineages, MSCs
secrete bioactive molecules that provide a
regenerative microenvironment for a

variety of injured adult tissues (Caplan,
2007). Experiments investigating the utility
of MSCs in augmenting bone-tendon
healing were first performed in rabbit
models (Lim et al., 2004 and Ouyang et
al., 2004). Mesenchymal stem cells (MSCs)
transplantation in the therapy of equine
tendonitis has been reported beneficial
effects by many researchers (Nixon et al.,
2008; Crovace et al., 2010 and Carvalho et
al., 2011). BMSCs can also be used
clinically to augment healing at the bone-
tendon interface after procedures such as
anterior cruciate ligament reconstruction
(Lim et al., 2004). There are now several
studies illustrating the potential for the use
of stem cells in tendon repair, and also their
use in other tissue engineering applications
(Rayanmarakkar et al.,  2009;
Rayanmarakkar et al., 2010; Oragui et al.,
2011 and Gerdoni et al., 2012).
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