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The microbiota  are normally involved in numerous factors concerned with the health of the fishes in their environment
and many of them can also cause threats to the same. In fish, the gut microbiota inhabiting the gastrointestinal tract
influence the physiology, nutrition, life span, immunity, besides acting as a barrier against pathogens. Although gut
microbiotas are present in all the fish, their composition varies based on their life stages, the environment in which they
live, diet, seasons, trophic levels, etc. There are numerous studies related to the intestinal microbiota of freshwater, marine
fish and in various life stages of fish. But the knowledge on the microbiota in aquatic ecosystem is yet to be explored.
Researches in this field will pave way to the develop techniques to manipulate the gut microbiota of the desired fish species
of culture to improve their growth and production. This review is intended to provide collective information on the gut
microbiota in fish, their development, dynamics in the living environment and their manipulation towards improving
production and sustainability in the field of fisheries.
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Introduction
Fishes are poikilothermic aquatic animals that
consist of a vast range of vertebrates to
invertebrates of the animal kingdom.  Fish are
considered as sources of low-fat high-quality
protein; rich in omega-3 fatty acids, vitamins like
B2 and D and minerals such as iron, calcium,
phosphorus, iodine, magnesium, zinc and
potassium. The consumption of fish has been
increased by increasing the world’s population
from the mid of the 20th century. According to
FAO (2020), in per capita terms, there is increase
of fish consumption from 9.0 kg in 1961 to 20.2 kg
in 2015, at an average rate of 1.5% increase per
year. The estimate for 2016 and 2017 was about
20.3 and 20.5 kg respectively. Such demand was
contributed by the total global fish production of
170.9 MMT through 90.9 MMT of capture
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fisheries and 80.0 MMT of aquaculture. The
aquaculture sector, contributed by both inland and
marine sector produced 51.4 MMT and 28.7
MMT, respectively contributing up to 46.8% of
total fish production.

Fish possess bacterial flora on or in their skin and
its various organs (Austin, 2002). Generally, the
bacterial genera isolated are related to the
environment of the fish and varies with numerous
factors such as the salinity and the load of bacterial
communities in the water. The bacteria recovered
from the surface of skin and gills may be temporary
rather than resident on the surface of the fish. Gut
microbiota of fish appear to vary with the
complications in the digestive system. The
microbiota present in the gut is the representation



of those from the surrounding environment or the
diet fed which can survive and multiply within
intestinal tract, there is also evidence for a different
intestinal microflora in some species (Cahill,
1990). Gut microbiota can influence development,
life span, physiology, immunity, and barriers
against the pathogen in fish (Yan et al., 2016).
Hence, the components that direct the intrusion
of microbes in the fish gut will give an underlying
advance towards anticipating and treating fish
diseases (Xiong et al., 2019).

Several factors may affect the microbiota of the
fish gut. The changes in external factors like age,
diet, environment and trophic levels can alter the
gut microbiota of the fish (Liu  et al., 2016;
Stephens et al., 2016; Michl et al., 2017; Wang
et al., 2018).  To study the gut microbiomes in
fish, various methods are being adopted for the
examination of the confederation of
microorganisms. In the past, the culture-
dependent methods (Ringo et al., 2003; Romero
and Navarrete, 2006), denaturing gradient gel
electrophoresis and temporal temperature
gradient gel electrophoresis techniques (Reveco
et al., 2014) revealed a very low fraction of the
significant microorganisms. But, today there are
wide varieties of culture-independent technique
available for the analysis of microbiota of fish
(Tarnecki et al. , 2017). By knowing the
importance of microbial communities in the fish
body, we can manipulate these communities to
bring out the best possible role to be expressed
in their body for the benefit of fish health.

Historical overview of gut microbiota of fish
The collective genomes within the
microorganisms inhabiting a particular
environment were termed as a microbiome
(Burokas et al. , 2015). Higher vertebrates
harbour these microbial communities in their
body from the skin surface to the gastrointestinal
tract (Sandrini et al., 2015). The studies on such
a complex form of microorganisms in fishes
started as early as the 1930s (Reed and Spence,
1929; Gibbons, 1933) in which they investigated

the skin and gut microbial communities. The
study was further explored by the influence of
intestinal flora in fish on fasting (Margolis, 1953).
Understanding the importance of these
microbiomes has led to several studies in fish
viz. changes in the gut microbiota with response
to the diet (Sera et al., 1972), variation in the gut
microbiota of the farmed fish (Gilmour et al.,
1976), the influence of the gut microbiome by
the surrounding environment and the intake of
diet (Cahill, 1990). One of the limitations in the
isolation and culture of gut microbiota using
culture-dependent methods is that, only 10% of
microorganisms has been studied.

Gut microbiota of freshwater fish
Considerable differences in the composition of
intestinal microbial flora in marine and freshwater
fish are described by Izvekova et al. (2007). The
gut microbial composition of the freshwater fish
differs due to the varying environmental
conditions of their habitat. Acinetobacter,
Aeromonas, Flavobacterium, Lactococcus,
Pseudomonas, obligate anaerobes (Bacteroides,
Clostridium and Fusobacterium) and members of
family Enterobacteriaceae dominate the gut of
freshwater species (Gómez and Balcazar, 2008).
A limited number of bacterial taxa found in the
intestines of some fish species may indicate not
only a low diversity of these bacteria but may
also be due to insufficient knowledge about them.
Herbivorous and omnivorous freshwater fish
shows shorter gut transit times with low levels of
short chained fatty acids (SCFA) in the gut, which
are produced during the conversion of
unassimilable algal constituents by the gut
microbes (German et al., 2010) than some of their
marine counterparts. The highest level  of SCFA
was reported in the posterior intestine of
Oreochromis sp. Free living Amoebae are
ubiquitous in freshwater fish Oreochromis
niloticus (Milanez et al., 2017) and its infection
poses a public health problems due to possible
human consumption. Beneficial gut microbiota
reported in various freshwater fish are presented
in Table.1
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Table 1.  Beneficial gut microbiota reported in various freshwater fish

                Host

Nile tilapia Tilapia nilotica, goldfish
(Carassius auratus),   and Ayu
(Plecoglossus altivelis)

Japanese eel (Anguilla japonica),
carp (Cyprinus carpio), goldfish
(Carassius auratus), Ayu
(Plecoglossus altivelis), tilapia
(Tilapia nilotica) and channel catfish
(Ictalurus punctatus)

Ayu (Plecoglossus altivelis), carp
(Cyprinus carpio), channel catfish
(Ictalurus punctatus), Japanese eel
(Anguilla japonica) and Tilapia
(Tilapia nilotica)

Silver carp (Hypophthalmichthys
molitrix), common carp (Cyprinus
carpio), channel catfish (Ictalurus
punctatus) and deepbodied crucian
carp (Carassius cuvieri)

Dominant gut microbiota

Obligate anaerobes (Bacteroidaceae)
were predominant over facultative
anaerobes (Vibrionaceae and
Enterobacteriaceae)

Bacteroides type A, with the potential
of producing vitamin B12

Aeromonas, Bacteroidaceae
and Clostridium strains producing
amylase that play an important role in
the digestion of starch

Lactococcus  raffinolactis, a
predominant intestinal LAB

Reference

Sakata
et al., 1980

Sugita
et al., 1991

Sugita et al.,
1997

Hagi et al.,
2004

Goldfish (Carassius auratus), common
carp (Cyprinus carpio) and Mozambique
tilapia (Oreochromis mossambicus)

Rohu (Labeo rohita) and catla (Catla
catla)

Zebrafish (Danio rerio)

Rohu (Labeo rohita), Mrigal (Cyrrhinus
mirgala) and Tilapia (Oreochromis
mossambicus)

Channel catfish (Ictalurus punctatus),
Largemouth bass (Micropterus
salmoides) and Bluegill (Lepomis
macrochirus)

Bacteroides type A strains with high
vitamin B12 producing ability,
Vancomycin-resistant bacteria such
as Cetobacterium somerae

Lactic acid bacteria Enterococcus
faecalis and Pediococcus acidilactici
to ferment fish processing waste

Aeromonas spp., Pseudomonas spp.,
Plesiomonas spp., Vibrio spp.,
Shewanella spp. and Cetobacterium
spp.
Enterobacter asbura, Pichia
kudriavzevii, Candida tropicalis and
Candida parapsilosis can produce
tannase to overcome the
antinutritional factors in the
feedstuffs.

Cetobacterium somerae,
Plesiomonas shigelloides,
Fusobacterium mortiferum
and Aeromonas sp.

Tsuchiya
et al., 2008

Rai et al.,
2011

Roeselers
et al., 2011

Mandal and
Ghosh,
2013

Larsen
et al., 2014
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Mrigal (Cyrrhinus mirgala and Tilapia
(Oreochromis niloticus)

Freshwater fishes Schizothorax zarudnyi
and Schizocypris altidorsalis

Grass carp (Ctenopharyngodon idellus)

Freshwater pufferfish (Tetraodon
cutcutia)

Pichia kudriavzevii and Candida
rugosa, extracellular enzyme
producing yeasts

Actinobacteria with their potential
to produce biologically active
compounds.
Dechloromonas, Methylocaldum,
Planctomyces, Rhodobacter,
Caulobacter, Flavobacterium,
and Pseudomonas

Gammaproteobacteria,
Fosobacteria, Actinobacteria,
Anerolineae, Betaproteobacteria,
Deinococci, Clostridia and
Deltaproteobacteria

Banerjee
and Ghosh,
2014
Jami et al.,
2015

Tran et al.,
2018

Deb et al.,

   Host Dominant gut microbiota Reference

Cont. Table 1.
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Gut microbiota of marine fishes
The fish and other marine animals have their
unique interaction with the surrounding
environment and the microorganisms inhabiting
the environment. The gut of marine fish is
dominated by Alcaligenes,  Alteromonas,
Aeromonas, Flavobacterium, Carnobacterium,
Moraxella, Micrococcus, Pseudomonas and
Vibrio (Gómez and Balcazar, 2008). A summary
of the major bacterial flora composing the gut
microbiota of marine fish was reviewed by
Llewellyn et al. (2014). A review of the intestinal
microflora of fish larvae and fry of 24 marine
and freshwater fish showed the most frequently
reported bacteria were Vibrio, Pseudomonas,
Cytophaga, Flavobacterium and the family
Enterobacteriaceae  (Ringø and Birkbeck,
1999). While the microbial community changes
with life stage and habitat, a relatively stable gut
microbiota are established within the first 50 days
of life for many species (Larsen et al., 2014).
Lactic acid bacteria (mainly Lactobacillus sp.)
have also been found to be minor components
of the gut microflora of both freshwater and
marine fish (Izvekova et al., 2007). Table 2
shows the dominant gut microbial communities
in marine fish.

Importance of gut microbiomta in disease
resistance
Gut microbiota are the microorganisms that are
colonizing the digestive tract, enveloping the
entire scope of the biochemical cycle, and incite
a resistant arrangement of the host life form
(Gómez and Balcazar, 2008). Numerous
beneficial bacterial strains have been created
to treat microorganism prompted bacterial
maladies, and this current strategy’s adequacy
has been demonstrated (Verschuere et al. ,
2000). Some beneficial microbes can create
microorganisms that stifle or even destroy the
inhibitory compounds (Teplitski et al., 2009).
Lactococcus lactis isolated from marine fish
produced bacteriocin nisin Z, which can restrain
the development of the fish microbe
Lactococcus garvieae at 5 AU mL-1 made it a
promising option in the prevention of
lactococcosis (Sequeiros et al. ,  2015).
A bacteria Centroscyllium fabricii isolated from
the deep sea shark was found to have an
antagonistic activity in the fish gut (Bindiya
et al., 2015).

Gut microbiota with respect to the life stages
in fish
The colonization of fish gut begins early in the
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Table 2. Dominant gut microbial communities in marine fish

                 Host
Neritic sharks
Atlantic salmon (Salmo salar), Long
jawed mudsucker (Gillichythys mirabilis)

Penaeus monodon

Pacific white shrimp (Penaeus
vannamei)
12 bony fish and 3 sharks
Damselfish (Pomacentridae) and
Cardinalfish (Apogonidae)

Rabbitfish (Siganus muscescens)

Pacific white shrimp (Penaeus
vannamei)

Atlantic cod (Gadus morhua)

Dicentrarchus labrax, Sparus aurata,
Diploduspuntazzo, Pagruspagrus,
Argyrosomus regius

Dominant gut microbiota
Photobacterium damselae
Tenericutes (Mycoplasma sp.)

Gamma Proteobacteria

Gamma Proteobacteria

Proteobacteria, Firmicutes
Endozoicomonaceae,
Shewanellaceae, Fusobacteriaceae,
Vibrionaceae and Pasteurellaceae
Firmicutes, Bacteroidetes and
delta-Proteobacteria
Alpha Proteobacteria alongside
Planctomycetales
Firmicutes, Proteobacteria,
Bacteroidetes, and Fusobacteria can
act as biomarker for oil contamination
Pelomonas puraquae,
Hydrogenophaga atypica,
Atopostipes suicloacalis,
Pseudomonas veronii,
Propionibacterium (Cutibacterium
acnes, Pseudomonas panacis and
Delftia acidovorans)

Reference
Grimes et al.,1985
Bano et al., 2007;
Llewellyn et al.,
2016
Rungrassamee
et al., 2014, 2016
Rungrassamee
et al., 2016
Givens et al., 2015
Parris et al., 2016

Nielsen et al., 2017

Chen et al., 2017

Walter et al., 2019

Nikouli et al., 2020

larval stage and is driven towards the
achievement of a complex assemblage of gut-
associated microorganisms (Nayak, 2010).
Microbial colonisation of fish larvae originates
from the eggs, the environment and the first
feed. The microbiota of the surrounding water
dictates which bacteria encounter the eggs and
consequently have the opportunities to
colonise. Upon hatching, sterile larvae intake
the chorion-associated bacteria, which are the
first colonisers of the developing gastrointestinal
tract (GIT) (Egerton et al., 2018). The GIT of
the newly hatched larvae tends to contain a few
bacteria. Subsequent bacterial habitats are
acquired in the fish larvae for the first time when
they begin to drink water to control
osmoregulation and the microbiota then
becomes further diversified through feeding

(Hansen and Olafsen, 1999). Numerous studies
have shown that diet plays a major role in
shaping the gut microbial community and from
first feeding; cause to substantial diversification
(Lauzon et al., 2010). Around 108 bacterial cells
having a place with more than 500 distinct
species are accounted to populate the fish gut,
which is overwhelmed by aerobes or facultative
anaerobes (Romero and Navarrete, 2006). The
diversity of the gut microbiota generally
increases as the fish diet changes from
predatory to omnivorous and omnivorous to
herbivorous (Liu et al. ,  2016). The gut
colonization can be either driven by stochastic
(neutral assembly) or deterministic (non- neutral
model). Stochastic deduced from random
dispersion of microorganisms or events that land



the microorganisms into the intestine that are
responsible for the final shape of the gut
microbial community and in deterministic, the
assembly is acquired by the host selective
factors, active dispersal by the host and microbe
and microbe-microbe interactions (Talwar
et al. ,  2018). Over a formative time,  the
colonization of gut was started by seeding from
the surrounding environment, then
progressively determined by the non-neutral
factors as the fish matures from larvae to adult
(Yan et al. ,  2016). Therefore, the studies
suggested stochastic factors as a determinant
in colonization of the GI tract. The gut microbial
community can change with a variety of factors
affecting the host,  including changing
environmental conditions such as temperature
and salinity (Macfarlane and Englyst, 1986),
developmental stage (Romero and Navarrete,
2006), digestive physiology (Cahill, 1990) and
feeding strategy (Uchii et al., 2006). Some of
the gut microfloras appear to be temporary,
while other bacterial floras seem to be
permanent residents (Kim et al. ,  2007).
Herbivorous fish like pinfish Lagodon
rhomboides under-goes an ontogenetic diet
shift, while transitioning from carnivorous
juveniles to either omnivorous or herbivorous
adults (Gallagher et al., 2001).

Likewise, the growth, development and
migration in anadromous Atlantic salmon Salmo
salar involve a radical shift across an ecological
and trophic spectrum (Orlov et al.,  2006).
Accompanying the behavioural, physiological
and dietary adaptations are necessary to cope
up with the transition between freshwater and
marine environments (McCormick et al., 2013).
The ecological succession of gut microbial
communities during development and migration
of wild teleost is an excellent system to explore
the contribution of host and environmental
factors in shaping the microbiome recruitment,
particularly in euryhaline species (Schmidt et al.,
2015). The study of Xia et al. (2014) provided
the first perception into the fish gut microbiota

and its changes during starvation. A detailed study
on interactions between gut microbiota and hosts
under such dynamic conditions will through new
light on how the hosts and microbes respond to
the dynamic environment. Nikouli  et al. (2020)
provided evidence on adult farmed fish in the
Mediterranean sea have a divergent and species-
specific gut microbiota profile, that are shaped
independently of the similar environmental
conditions under which they grow.

Herbivorous marine fish species having higher
intestinal short-chain fatty acid concentrations
depend on the intestinal microbiota to convert
the unassimilable algal constituents to
metabolically useful short-chain fatty acids
(White et al., 2010), and these fish displays
metabolic specializations to the hindgut
fermentation (Willmott et al. ,  2005).
Absorption of such short-chain fatty acid in fish
is driven by an osmotic gradient between the
intestine and blood (Titus and Ahearn, 1992),
and so the concentration of these end products
of anaerobic metabolism of microbiome in the
posterior gut can serve as a rough indicator on
potential importance of microbial digestion.
Proteobacteria has far and wide presence in the
gut microbiota of the aquatic invertebrates and
are dominant in crustacean gut (Rungrassamee,
2014; Holt et al. ,  2020). The phylum
proteobacterium is highly diverse in genetics,
morphology and physiology (Stackebrandt
et al. ,  1988). Crustaceans predominantly
consist of Vibrio and Photobacterium spp.
which have additionally classified sequences
attributed to other high-level taxa:
Bacteroidetes, Firmicutes, Fusobacteria and
Actinobacteria in Penaeus monodon
(Rungrassamee et al., 2014). Numerous Vibrio
spp. produce chitinolytic enzymes (Sugita and
Ito, 2006), which may express their strength in
a chitin-rich environment like crustacean gut
by giving a niche substrate for their use.
However, the enzymatic capability of a few
Vibrio spp. may contribute to negative impacts
on the carapace of the animals and other health
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implications such as red disease, tail necrosis,
loose shell syndrome (Jayasree et al., 2006).
Microbial profiles are likely impacted by the
longitudinal axis of the gut itself as various
morphologies and functions along the gut will
induce differential pressures on the microbial
selection (Holt  et al., 2020). These interior
variations show comparable taxa in the gut of

wild and farmed P. monodon (Rungrassamee
et al., 2014). Penaeus vannamei guts from
various farms were more likely similar to each
other despite differences in the microbial
community structure of their respective rearing
environment (Zoqratt et al., 2018). Table 3
provides the details of the factors that are
affecting the microbial communities in fish.

Table 3. Factors that are affecting the microbial communities in fish
Factors
Age

Diet

Environment

                        Findings
Microbial diversity increases with host-age.
Age has a significant influence on the intestinal microbiota;
water microbiota strongly influence gut microbiota at early
life stages.

Gut microbial diversity decreases as the source of nutrient
derivation in the diet are restricted.
Gut microbiome composition as well as metabolite profiles
are significantly altered by host species and feeding
behaviour.
Colonisation with significantly different adherent and non-
adherent communities;  non-adherent microbiome are
much diverse and diet-dependent than adherent
microbiome.
Gut microbiome differs by diet treatment but communities
in biofilters remain stable independent of diet; gut
communities less diverse than those of water and biofilters.

Gut microbial diversity increases as the fish develop and
is less affected by the surrounding environment than by
host diet and development.
Gut environment and other host development processes
shape the microbiome.

Water microbial communities strongly shape those in the
gut thereby resulting in a correlation between water and
gut microbial community dynamics.

Reference
Wang et al., 2018
Bledsoe et al.,
2016

Michl et al., 2017

Li et al., 2017a

Gajardo et al.,
2017

Schmidt et al.,
2016

Li et al., 2017b

Yan et al., 2016

Giatsis et al., 2015

Host factors

Environmental factors more strongly influence microbiome
at early life stages.

The microbiome is significantly altered even at a low level
of environmental changes but has strong resilience power.

Presence of core gut microbial flora regardless of the habitat
type will indicate the operational host selective forces.

Similar gut microbiota regardless of source; shaped by host
factors; differences in composition highlight the habitat-
specific taxa.

Stephens et al.,
2016
Narrowe et al.,
2015
Dehler et al., 2017

Lyons et al., 2017

 Table 3 , Cont.
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Gut microbial communities in different species are not
exactly the same but also not different altogether.

Probiotic administration for a short period significantly
affects the gut microbiota composition at later stages of life.

Diet, time of sampling and host-specific factors also
influence the microbes.

The gut microbiome is dependent upon the host life history
or genetic background; different nutritional stresses affect
host-microbiome and health differently.

Trophic level strongly influences the microbiome
composition of fish from the same habitats supported by
evidence of a large core gut microbiota in multiple species.

Geographical distance has less impact on gut microbiome;
diversity and identity of microbial communities are more
strongly determined by life-cycle stage.

External factors

Host factors

Trophic levels

Geographical
distance

Song et al., 2016

Giatsis et al., 2016

Zarkasi et al.,
2016
Gatesoupe et al.,
2016

Liu et al., 2016

Llewellyn et al.,
2016

Factors Findings Reference
Cont. Table 3.

Methods for manipulation of gut microbiota
The methods of manipulation of gut microbiota
in fish include the alteration of dietary proteins
and lipids, as well as the addition of probiotics
and prebiotics in the diet.

Proteins: The source of proteins (Desai et al.,
2012), their quantity (Geurden et al., 2014) and
chemical structure (Kotzamanis et al., 2007) of
proteins can influence the gut microbial
composition. Peptides and glycopeptides, released
through protein digestion can modulate the
condition and activity of the intestinal cells as well
as the microbiota of the gut ( wi tecka et al.,
2012). Short peptides can be added to the diet
that can directly manipulate gut microbial
composition by providing suitable substrates for
bacteria thus encouraging their proliferation
(Kotzamanis et al., 2007). Some peptides produce
antimicrobial activity and help to protect against
pathogenic bacteria (Sila et al., 2014).

Lipids: It has been confirmed that the increased
lipid concentrations resulted in a more diverse gut
microbial community in fish (Ringø and Birkbeck,
1999). The studies of Lødemel  et al. (2001) have
shown that the use of plant oils can improve fish’s

resistance to pathogenic bacteria as these natural
plant oils are deficient in marine polyunsaturated
fatty acids, arachidonic acid, eicosapentaenoic
acid and docosahexaenoic acid.

Probiotics: Probiotics are live beneficial
microorganisms which when administered in
adequate amounts confer various health benefits
on the host. Several studies have confirmed that
the gut microbial communities can be manipulated
with the application of probiotics (Asaduzzaman
et al., 2018; Siriyappagouder et al., 2018).

Prebiotics: The term ‘dietary prebiotics”, was
defined as “a selectively fermented ingredient, that
results in specific changes in the composition and/
or activity of the gastrointestinal microbiota, thus
conferring benefit(s) upon host health” (Gibson et
al., 2010). Galactooligosaccharides, arabinoxylo-
oligosaccharides, fructooligosaccharides, chito-
oligosaccharide,  mannanoligosacch-arides, inulin,
and levan were the common prebiotics used in
aquaculture (Ringø et al., 2014).

Conclusion
The research findings on the gut microbiome of
the fish, thus, far as provided an understanding

Indian Journal of Animal Health,  Special Issue, December,  2020188



on the gut microbial communities of various
freshwater and marine fish, mechanisms in the
development of the fish gut microbiota, the
variation in their composition to the different
environmental conditions of the water, diet,
seasons, and trophic levels. This knowledge will
pave way for the exploration of gut microbial

manipulation techniques for increasing
production, finding new advanced techniques to
study the microbial communities that are normally
difficult to culture or identification.
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