Review Article

Production, characterization and bio functionalities of bioactive peptides from non-bovine species of milk: A review

  • Views: 21
Authors:
*Corresponding Author Email:  subrota_dt@yahoo.com, subrota.hati@kamdhenuuni.edu.in

Received -  15.04.2024, Accepted -  17.07.2024, Published -  04.08.2024

Citation:  Vadher KR, Gawai KM, Singh BP, Sarkar P and Hati S, 2024. Production, characterization and bio functionalities of bioactive peptides from non-bovine species of milk: A review. Indian J Anim Health, doi: https://doi.org/10.36062/ijah.2024.04024

Abstract

The exploration of bioactive peptides derived from non-bovine milk has garnered considerable interest due to their potential health-promoting properties and functional applications. This review provides an overview of production, characterization, and biofunctionalities of bioactive peptides obtained from various non-bovine milk sources, including but not limited to goat, sheep, buffalo, and camel milk. The production methods involve enzymatic hydrolysis or fermentation of milk proteins using proteolytic enzymes as trypsin, pepsin, and chymosin, among others or by using different cultures. Subsequently, various separation and purification techniques are employed to isolate the bioactive peptides, including ultrafiltration, chromatography and membrane separation. The structures of the bioactive peptides are identified and clarified through the use of characterization techniques such as nuclear magnetic resonance (NMR) spectroscopy, high-performance liquid chromatography (HPLC) and mass spectrometry. These peptides exhibit diverse biological activities, including antioxidant, antimicrobial, antihypertensive, immunomodulatory and opioid-like properties, among others. Furthermore, the bioactive peptides derived from non-bovine milk have demonstrated potential health benefits, such as reducing blood pressure, enhancing immune function, promoting gut health and exerting anti-inflammatory effects. Additionally, they find applications in functional foods, nutraceuticals and pharmaceutical formulations aimed at improving human health and wellbeing.


Reference

Ahmad G, Almasry M, Dhillon AS, Abuayyash MM, Kothandaraman N et al., 2017. Overview and Sources of Reactive Oxygen Species (ROS) in the Reproductive System. In: Agarwal, A., et al. Oxidative Stress in Human Reproduction. Springer, Cham, doi: 10.1007/978-3-319-48427-3_1

Ahmed AS, El-Bassiony T, Elmalt LM and Ibrahim HR, 2015. Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Res Int, 74: 80-88, doi: 10.1016/j.foodres.2015.04.032

Alferez MJM, Aliaga IL, Barrionuevo M and Campos MS, 2003. Effect of dietary inclusion of goat milk on the bioavailability of zinc and selenium in rats. Journal Dairy Res, 70(2): 181-187, doi: 10.1017/S0022029903006058

Alhaj OA, 2017. Identification of potential ACE-inhibitory peptides from dromedary fermented camel milk. CyTA J Food, 15(2): 191-195, doi: 10.1080/19476337.2016.1236353

Alichanidis E, Moatsou G and Polychroniadou A, 2016. Composition and properties of non-cow milk and products. In Non-bovine Milk and Milk Products, pp 81-116, Academic Press, doi: 10.1016/B978-0-12-803361-6.00005-3

Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K et al., 2002. Methods for testing antioxidant activity. Analyst, 127(1): 183-198, doi: 10.1039/B009171P

Aslam MZ, Shoukat S, Hongfei Z and Bolin Z, 2019. Peptidomic analysis of ACE inhibitory peptides extracted from fermented goat milk. Int J Pept Res Ther, 25: 1259-1270, doi: 10.1007/s10989-018-9771-0

Aviel-Ronen S, Lau SK, Pintilie M, Lau D, Liu N et al., 2008. Glypican-3 is overexpressed in lung squamous cell carcinoma, but not in adenocarcinoma. Mod Pathol, 21(7): 817-825, doi: 10.1038/modpathol.2008.37

Bafna S, Kaur S and Batra SK, 2010. Membrane-bound mucins: The mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20): 2893-2904, doi: 10.1038/onc.2010.87

Bakry IA, Yang L, Farag MA, Korma SA, Khalifa I et al., 2021. A comprehensive review of the composition, nutritional value and functional properties of camel milk fat. Foods, 10(9): 2158, doi: 10.3390/foods10092158

Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A et al., 2017. Sheep milk: physicochemical characteristics and relevance for functional food development. Compr Rev Food Sci Food Saf, 16(2): 247-262, doi: 10.1111/1541-4337.12250

Barlowska J, Szwajkowska M, Litwi?czuk Z and Król J, 2011. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr Rev Food Sci Food Saf, 10(6): 291-302, doi: 10.1111/j.1541-4337.2011.00163.x

Barrionuevo M, Aliaga L, Alférez MJ, Mesa E, Nestáres T et al., 2003. Beneficial effect of goat milk on bioavailability of copper, zinc and selenium in rats. J Physiol Biochem, 59(2): 111-118, doi: 10.1007/bf03179876 

Beltrami L, Zingale LC, Carugo S and Cicardi M, 2006. Angiotensin-converting enzyme inhibitor-related angioedema: how to deal with it. Expert Opin drug Saf, 5(5): 643-649, doi: 10.1517/14740338.5.5.643

Bhattarai RR, 2012. Importance of goat milk. J Food Sci Technol Nepal, 7: 107-111, doi: 10.3126/jfstn.v7i0.11209

Brumini D, Criscione A, Bordonaro S, Vegarud GE, Marletta D et al., 2016. Whey proteins and their antimicrobial properties in donkey milk: A brief review. Dairy Sci Technol, 96: 1-14, doi: 10.1007/s13594-015-0246-1

Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A et al., 2016. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem, 408: 2677-2685

Ceballos LS, Morales ER, de la Torre Adarve G, Castro JD, Martínez LP et al., 2009. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J Food Comp Anal, 22(4): 322-329, doi: 10.1016/j.jfca.2008.10.020

Chia J, Burrow K, Carne A, McConnell M, Samuelsson L et al., 2017. Minerals in sheep milk. In: Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands. Chapter 27, pp 345-362, doi: 10.1016/B978-0-12-809762-5.00027-9

Chiangjong W, Chutipongtanate S and Hongeng S, 2020. Anticancer peptide: physicochemical property, functional aspect and trend in clinical application. Int J Oncol, 57(3): 678-696, doi: 10.3892/ijo.2020.5099

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD et al., 2018. IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract, 138: 271-281, doi: 10.1016/j.diabres.2018.02.023

Claeys WL, Verraes C, Cardoen S, De Block J, Huyghebaert A et al., 2014. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control, 42: 188-201, doi: 10.1016/j.foodcont.2014.01.045

Contreras F, de la Parte MA, Cabrera J, Ospino N, Israili ZH et al., 2003. Role of angiotensin II AT1 receptor blockers in the treatment of arterial hypertension. Am J Ther, 10(6): 401-408, doi: 10.1097/00045391-200311000-00005

Coppola R, Salimei E, Succi M, Sorrentino E, Nanni M et al., 2002. Behaviour of Lactobacillus rhamnosus strains in ass's milk. Annal Microbiol, 52(1): 55-60

Correa APF, Daroit DJ, Coelho J, Meira SM, Lopes FC et al., 2011. Antioxidant, antihypertensive and antimicrobial properties of ovine milk caseinate hydrolyzed with a microbial protease. J Sci Food Agric, 91(12): 2247-2254, doi: 10.1002/jsfa.4446

Crowley SV, Kelly AL, Lucey JA and O'Mahony JA, 2017. Potential Applications of Non-Bovine Mammalian Milk in Infant Nutrition. In: Handbook of Milk of Non- Bovine Mammals, pp 625-654, doi: 10.1002/9781119110316.ch13

DePeters EJ and Ferguson JD, 1992. Nonprotein nitrogen and protein distribution in the milk of cows. J Dairy Sci, 75(11): 3192-3209, doi: 10.3168/jds.S0022-0302(92)78085-0

Dharmaraja AT, 2017. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem, 60(8): 3221-3240, doi: 10.1021/acs.jmedchem.6b01243

Ehlayel MS, Hazeima KA, Al-Mesaifri F and Bener A, 2011. Camel milk: An alternative for cow's milk allergy in children. In: Allergy Asthma Proc (Vol. 32, No. 3, pp 255-258), doi: 10.2500/aap.2011.32.3429

Eigel WN, Butler JE, Ernstrom CA, Farrell Jr HM, Harwalkar VR et al., 1984. Nomenclature of proteins of cow's milk: fifth revision. J Dairy Sci, 67(8): 1599-1631, doi: 10.3168/jds.S0022-0302(84)81485-X

Fadnes B, Rekdal Ø and Uhlin-Hansen L, 2009. The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer, 9: 1-13, doi: 10.1186/1471-2407-9-183

FAO, 2022. Poimena Analysis and International Wool Textile Organisation. Available in: https://iwto.org/wp-content/uploads/2022/04/IWTO-Market-Information-Sample-Edition-17.pdf  

FAOSTAT. 2024(n.d.). Retrieved from https://www.fao.org/faostat/en/#home In-Text Citation: (“FAOSTAT,” n.d.)

Gachons C and Breslin PA, 2016. Salivary amylase: digestion and metabolic syndrome. Curr Diab Rep, 16: 1-7, doi: 10.1007/s11892-016-0794-7

Gammoh S, Alu'datt MH, Tranchant CC, Alhamad MN, Rababah T et al., 2020. Modification of the functional and bioactive properties of camel milk casein and whey proteins by ultrasonication and fermentation with Lactobacillus delbrueckii subsp. lactis. LWT, 129: 109501, doi: 10.1016/j.lwt.2020.109501

Gomez-Ruiz JÁ, López-Expósito I, Pihlanto A, Ramos M, Recio I et al., 2008. Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC–MS/MS. European Food Res Technol, 227: 1061-1067, doi: 10.1007/s00217-008-0820-3

Gomez-Ruiz JÁ, Ramos M and Recio I, 2007. Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis, 28(22): 4202-4211, doi: 10.1002/elps.200700324

Gong H, Gao J, Wang Y, Luo QW, Guo KR et al., 2020. Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells. J Dairy Sci, 103(6): 4907-4918l, doi: 10.3168/jds.2019-17513

Gruden S and Poklar Ulrih N, 2021. Diverse mechanisms of antimicrobial activities of lactoferrins, lactoferricins, and other lactoferrin-derived peptides. Int J Mol Sci, 22(20): 11264, doi: 10.3390/ijms222011264

Gul W, Farooq N, Anees D, Khan U, Rehan F et al., 2015. Camel milk: A boon to mankind. Int J Res Stud Biosci, 3: 23-29

Habib HM, Ibrahim WH, Schneider-Stock R and Hassan HM, 2013. Camel milk lactoferrin reduces the proliferation of colorectal cancer cells and exerts antioxidant and DNA damage inhibitory activities. Food Chem, 141(1): 148-152, doi: 10.1016/j.foodchem.2013.03.039

Harris F, Dennison SR, Singh J and Phoenix DA, 2013. On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev, 33(1): 190-234, doi: 10.1002/med.20252

Haskito AEP, Mahdi C, Padaga MC and Roosdiana A, 2020. The effect of goat milk yoghurt casein antioxidant activity on histopathology of lung in male Rattus norvegicus exposed by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). In J Physics: Conference Series (Vol. 1430, No. 1, pp 012010), IOP Publishing, doi: 10.1088/1742-6596/1430/1/012010

Hati S, Patel N and Mandal S, 2018. Comparative growth behaviour and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Prob Antimicrob Proteins, 10: 277-283, doi: 10.1007/s12602-017-9279-5

Herrouin M, Mollé D, Fauquant J, Ballestra F, Maubois JL et al., 2000. New genetic variants identified in donkey's milk whey proteins. J Protein Chem, 19: 105-116, doi: 10.1023/A:1007078415595

Homayouni-Tabrizi M, Asoodeh A and Soltani M, 2017. Cytotoxic and antioxidant capacity of camel milk peptides: effects of isolated peptide on superoxide dismutase and catalase gene expression. J Food Anal, 25(3): 567-575, doi: 10.1016/j.jfda.2016.10.014

Iram D, Sansi MS, Zanab S, Vij S, Ashutosh et al., 2022. In silico identification of antidiabetic and hypotensive potential bioactive peptides from the sheep milk proteins- A molecular docking study. J Food Biochem, 46(11): e14137, doi: 10.1111/jfbc.14137

Izadi A, Khedmat L and Mojtahedi SY, 2019. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. J Funct Foods, 60: 103441, doi: 10.1016/j.jff.2019.103441

Jiang J, Chen S, Ren F, Luo Z and Zeng SS, 2007. Yak milk casein as a functional ingredient: preparation and identification of angiotensin-I-converting enzyme inhibitory peptides. J Dairy Res, 74(1): 18-25, doi: 10.1016/j.jff.2019.103441

Jilo K and Tegegne D, 2016. Chemical composition and medicinal values of camel milk. Int J Res Stud Biosci, 4(4): 13-25

Jodhani K, Basaiawmoit B, Sakure A, Das S, Hati S et al., 2022. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk. J Food Sci Technol, 59(11): 4262-4272, doi: 10.1007/s13197-022-05493-2

Kapila R, Kavadi PK and Kapila S, 2013. Comparative evaluation of allergic sensitization to milk proteins of cow, buffalo and goat. Small Rumin Res, 112(1-3): 191-198, doi:10.1016/j.smallrumres.2012.11.028

Kie?czewska K, Jankowska A, D?browska A, Wachowska M, Ziajka J et al., 2020. The effect of high pressure treatment on the dispersion of fat globules and the fatty acid profile of caprine milk. Int Dairy J, 102: 104607, doi:10.1016/j.idairyj.2019.104607

Kitts DD and Weiler K, 2003. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr Pharm Des, 9(16): 1309-1323, doi: 10.2174/1381612033454883

Koksal Z, Gulcin I and Ozdemir H, 2016. An important milk enzyme: lactoperoxidase. Milk Proteins-From Structure to Biological Properties and Health Aspects, pp 141-156

Kompan D and Komprej A, 2012. The effect of fatty acids in goat milk on health. In Milk production- An up-to-date Overview of Animal Nutrition, Management and Health. Intech Open, doi: 10.5772/50769

Krentz AJ and Bailey CJ, 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs, 65: 385-411, doi: 10.2165/00003495-200565030-00005

Kumar A and Sharma A, 2016. Nutritional and medicinal superiority of goat milk over cow milk in infants. Int J Pediatric Nurs, 2(1): 47-50

Lammi C, Zanoni C, Arnoldi A and Vistoli G, 2016. Peptides derived from soy and lupin protein as dipeptidyl-peptidase IV inhibitors: In vitro biochemical screening and in silico molecular modeling study. J Agric Food Chem, 64(51): 9601-9606, doi: 10.1021/acs.jafc.6b04041

Lee SH and Jeon YJ, 2013. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia, 86: 129-136, doi: 10.1016/j.fitote.2013.02.013

Leong A, Liu Z, Almshawit H, Zisu B, Pillidge C et al., 2019. Oligosaccharides in goats’ milk-based infant formula and their prebiotic and anti-infection properties. Br J Nutr, 122(4): 441-449, doi: 10.1017/S000711451900134X

Li J, Liu S, Lakshminarayanan R, Bai Y, Pervushin K et al., 2013. Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochim Biophys Acta Biomembr, 1828(3): 1112-1121, doi: 10.1016/j.bbamem.2012.12.015

Li Y, Ma Q, Liu G and Wang C, 2022. Effects of donkey milk on oxidative stress and inflammatory response. J Food Biochem, 46(4): e13935, doi: 10.1111/jfbc.13935

Loboda D, Koz?owski H and Rowi?ska-?yrek M, 2018. Antimicrobial peptide- metal ion interactions- A potential way of activity enhancement. New J Chem, 42(10): 7560-7568, doi: 10.1039/C7NJ04709F

Madhusudan NC, Ramachandra CD, Udaykumar ND, Sharnagouda HD, Nagraj ND et al., 2017. Composition, characteristics, nutritional value and health benefits of donkey milk- A review. Dairy Science and Technology, EDP sciences/Springer

Majumder K and Wu J, 2014. Molecular targets of antihypertensive peptides: understanding the mechanisms of action based on the pathophysiology of hypertension. Inter J Mol Sci, 16(1): 256-283, doi: 10.3390/ijms16010256

Makrilakis K, 2019. The role of DPP-4 inhibitors in the treatment algorithm of type 2 diabetes mellitus: when to select, what to expect. Inter J Environ Res Public Health, 16(15): 2720, doi: 10.3390/ijerph16152720

Manaer T, Yu L, Zhang Y, Xiao XJ, Nabi XH et al., 2015. Anti-diabetic effects of shubat in type 2 diabetic rats induced by combination of high-glucose-fat diet and low-dose streptozotocin. J Ethnopharmacol, 169: 269-274, doi: 10.1016/j.jep.2015.04.032

Martini M, Altomonte I, Tricò D, Lapenta R, Salari F et al., 2021. Current knowledge on functionality and potential therapeutic uses of donkey milk. Animals, 11(5): 1382, doi: 10.3390/ani11051382

Mati A, Senoussi-Ghezali C, Zennia SSA, Almi-Sebbane D, El-Hatmi H et al., 2017. Dromedary camel milk proteins, a source of peptides having biological activities- A review. Int Dairy J, 73: 25-37, doi: 10.1016/j.idairyj.2016.12.001

May GL, Wright LC, Dyne M, MacKinnon WB, Fox RM et al., 1988. Plasma membrane lipid composition of vinblastine sensitive and resistant human leukaemic lymphoblasts. Int J Cancer, 42(5): 728-733, doi: 10.1002/ijc.2910420517

Mehra R, Sangwan K and Garhwal R, 2021. Composition and therapeutic applications of goat milk and colostrum. Research and Reviews. J Dairy Sci Technol, 10(2): 1-7

Meisel H and FitzGerald RJ, 2003. Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des, 9(16): 1289-1296, doi: 10.2174/1381612033454847

Mellander OLOF, 1950. The physiologic importance of the casein phosphopeptide calcium salt, II: peroral calcium dosage of infants. Some aspects of the pathogenesis of rickets. Acta Soc Med Ups, 55: 247-255

Muhialdin BJ and Algboory HL, 2018. Identification of low molecular weight antimicrobial peptides from Iraqi camel milk fermented with Lactobacillus plantarum. Pharma Nutr, 6(2): 69-73, doi: 10.1016/j.phanu.2018.02.002

Naafs MA, 2018. The antimicrobial peptides: ready for clinical trials. Biomed J Sci Tech Res, 7: 001536, doi: 10.26717/BJSTR.2018.07.001536

NAAS, 2021. Potential of Non-Bovine Milk. Policy Paper No. 97, National Academy of Agricultural Sciences, New Delhi, pp 20

Naveen J and Baskaran V, 2018. Antidiabetic plant-derived nutraceuticals: A critical review. Eur J Nutri, 57: 1275-1299, doi: 10.1007/s00394-017-1552-6

NDDB. Accessed September 23, 2021. https://www.nddb.coop/ccnddb/milk-facts

Nguyen LT, Haney EF and Vogel HJ, 2011. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 29(9): 464-472, doi: 10.1016/j.tibtech.2011.05.001

Nong NTP and Hsu JL, 2021. Characteristics of food protein-derived antidiabetic bioactive peptides: A literature update. Int J Mol Sci, 22(17): 9508, doi: 10.3390/ijms22179508

Nudda A, Atzori AS, Correddu F, Battacone G, Lunesu MF et al., 2020. Effects of nutrition on main components of sheep milk. Small Rumin Res, 184: 106015, doi: 10.1016/j.smallrumres.2019.11.001

Papo N, Seger D, Makovitzki A, Kalchenko V, Eshhar Z et al., 2006. Inhibition of tumor growth and elimination of multiple metastases in human prostate and breast xenografts by systemic inoculation of a host defense–like lytic peptide. Cancer Res, 66(10): 5371-5378, doi:10.1158/0008-5472.CAN-05-4569

Park YW and Haenlein GF, 2007. Goat milk, its products and nutrition. In: Handbook of food products manufacturing, pp 449-488, doi: 10.1002/9780470113554.ch69

Parmar H, Hati S, Panchal G and Sakure AA, 2020. Purification and production of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented goat milk. 

Int J Pept Res Ther, 26: 997-1011, doi: 10.1007/s10989-019-09902-7

Patel D, Basaiawmoit B, Sakure A, Das S, Maurya R et al., 2021. Exploring potentials of antioxidative, anti-inflammatory activities and production of bioactive peptides in lactic fermented camel milk. Food Biosci, 44: 101404, doi: 10.1016/j.fbio.2021.101404

Pei J, Jiang H, Li X, Jin W and Tao Y, 2017. Antimicrobial peptides sourced from post-butter processing waste yak milk protein hydrolysates. AMB Express, 7: 1-6, doi: 10.1186/s13568-017-0497-8

Prosser CG, 2021. Compositional and functional characteristics of goat milk and relevance as a base for infant formula. J Food Sci, 86(2): 257-265, doi: 10.1111/1750-3841.15574

Rassin DK, Sturman JA and Gaull GE, 1978. Taurine and other free amino acids in milk of man and other mammals. Early Hum Dev, 2(1): 1-13, doi: 10.1016/0378-3782(78)90048-8

Reddy V, Urooj A and Kumar A, 2005. Evaluation of antioxidant activity of some plant extracts and their application in biscuits. Food Chem, 90(1-2): 317-321, doi: 10.1016/j.foodchem.2004.05.038

Riedl S, Rinner B, Asslaber M, Schaider H, Walzer S et al., 2011. In search of a novel target- Phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta, 1808(11): 2638-2645, doi: 10.1016/j.bbamem.2011.07.026

Rizzello CG, Losito I, Gobbetti M, Carbonara T, De Bari MD et al., 2005. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. J Dairy Sci, 88(7): 2348-2360, doi: 10.3168/jds.S0022-0302(05)72913-1

Sansi MS, Iram D, Zanab S, Vij S, Puniya AK et al., 2022. Antimicrobial bioactive peptides from goat milk proteins: in silico prediction and analysis. J Food Biochem, 46(10): e14311, doi:  10.1111/jfbc.14311

Saravanan D and Mohammed Al-Kassim H, 2015. A review of potential anticancers from antimicrobial peptides. Inter J Pharm and Pharm Sci, 7(4): 19-26

Sherbet GV, 1989. Membrane fluidity and cancer metastasis. Pathobiology, 57(4): 198-205, doi: 10.1159/000163526

Shori AB, 2015. Camel milk as a potential therapy for controlling diabetes and its complications: A review of in vivo studies. J Food  Drug Anal, 23(4): 609-618, doi: 10.1016/j.jfda.2015.02.007

Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK et al., 2023. Antidiabetic, angiotensin?converting enzyme inhibitory and anti?inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic?fermented camel milk with molecular interaction study. Int J Dairy Technol, 76(1): 149-167, doi:10.1111/1471-0307.12910

Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R et al., 2022. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti?inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides. J Food Biochem, 46(12): e14449, doi:  10.1111/jfbc.14449

Singh BP, Rohit, Manju KM, Sharma R, Bhushan B et al., 2023. Nano-conjugated food-derived antimicrobial peptides as natural biopreservatives: A review of technology and applications. Antibiotics, 12(2): 244, doi: 10.3390/antibiotics12020244

Singh BP, Vij S and Hati S, 2014. Functional significance of bioactive peptides derived from soybean. Peptides, 54: 171-179, doi: 10.1016/j.peptides.2014.01.022

Skoufos I, Tzora A, Giannenas I, Karamoutsios A, Tsangaris G et al., 2017. Milk quality characteristics of Boutsiko, Frisarta and Karagouniko sheep breeds reared in the mountainous and semimountainous areas of Western and Central Greece. Int J Dairy Technol, 70(3): 345-353, doi: 10.1111/1471-0307.12349

Sohaib M, Anjum FM, Sahar A, Arshad MS, Rahman UU et al., 2017. Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: A comprehensive review. Int J Food Prop, 20(11): 2581-2593, doi: 10.1080/10942912.2016.1246456

Sok M, Šentjurc M, Schara M, Stare J, Rott T et al., 2002. Cell membrane fluidity and prognosis of lung cancer. Ann Thorac Surg, 73(5): 1567-1571, doi: 10.1016/S0003-4975(02)03458-6

Solanki D, Hati S and Sakure A, 2017. In silico and in vitro analysis of novel angiotensin I-converting enzyme (ACE) inhibitory bioactive peptides derived from fermented camel milk (Camelus dromedarius). Int J Pept Res Ther, 23: 441-459, doi: 10.1007/s10989-017-9577-5

Sonu KS and Basavaprabhu HN, 2020. Compositional and therapeutic signatures of goat milk: A review. Int J Chem Stud, 8: 1013-1019, doi: 10.22271/chemi.2020.v8.i2p.8902

Sousa YR, Medeiros LB, Pintado MME and Queiroga RC, 2019. Goat milk oligosaccharides: composition, analytical methods and bioactive and nutritional properties. Trends Food Sci Technol, 92: 152-161, doi: 10.1016/j.tifs.2019.07.052

Srivastava A, Rao LJM and Shivanandappa T, 2012. A novel cytoprotective antioxidant: 4-Hydroxyisophthalic acid. Food Chem, 132(4): 1959-1965, doi: 10.1016/j.foodchem.2011.12.032

Teerasak E, Thongararm P, Roytrakul S, Meesuk L, Chumnanpuen P et al., 2016. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput Struct Biotechnol J, 14: 49-57, doi: 10.1016/j.csbj.2015.11.005

Thevenot J, Cauty C, Legland D, Dupont D, Floury J et al., 2017. Pepsin diffusion in dairy gels depends on casein concentration and microstructure. Food Chem, 223: 54-61, doi: 10.1016/j.foodchem.2016.12.014

Thomas DL and Haenlein GFW, 2017. Production of sheep milk. In: Park YW, Haenlein GFW, Wendorff WL (Eds.), Handbook of Milk of non-Bovine Mammals, second edn. John Wiley Sons, Ltd, West Sussex, pp 181-209

Tidona F, Criscione A, Guastella AM, Bordonaro S, Marletta D et al., 2011. Gross composition and nutritional properties of donkey milk produced in Sicily. Scienza e Tecnica Lattiero-Casearia, 62(3): 217-221

Tomazou M, Oulas A, Anagnostopoulos AK, Tsangaris GT, Spyrou GM et al., 2019. In silico identification of antimicrobial peptides in the proteomes of goat and sheep milk and feta cheese. Proteomes, 7(4): 32, doi: 10.3390/proteomes7040032

Tripaldi C, Martillotti F and Terramoccia S, 1998. Content of taurine and other free amino acids in milk of goats bred in Italy. Small Rumin Res, 30(2): 127-136, doi: 10.1016/S0921-4488(98)00095-9

Tsakalidou E and Papadimitriou K (Eds.), 2016. Non-bovine milk and milk products. Academic Press

Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ et al., 1991. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res, 51(11): 3062-3066

Wang Y, Bekhit AED, Morton JD and Mason S, 2017. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications on Health and Disease; Watson, R.R., Collier, R.J., Preedy, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 28: pp 363-375, doi: 10.1016/B978-0-12-809762-5.00028-0

Wendorff WL and Haenlein GF, 2017.  Sheep milk–composition and nutrition. In: Handbook of milk of non-bovine mammals, pp 210-221, doi: 10.1002/9781119110316.ch3.2

Wernery U, 2006. Camel milk, the white gold of the desert. J Camel Pract Res, 13(1): 15-26

Wimley WC, 2010. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Bio, 5(10): 905-917, doi: 10.1021/cb1001558

WorldOStats, 2023. https://worldostats.com/post/goat-population-by-country 2023#:~:text=The%20global%20goat%20population%20stands,India%20%2D%20148%2C747%2C429  

Xu G, Xiong W, Hu Q, Zuo P, Shao B et al., 2010. Lactoferrin?derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa. J Appl Microbiol, 109(4): 1311-1318, doi: 10.1111/j.1365-2672.2010.04751.x

Yasmin I, Iqbal R, Liaqat A, Khan WA, Nadeem M et al., 2020. Characterization and comparative evaluation of milk protein variants from pakistani dairy breeds. Food Sci Anim Res, 40(5): 689, doi: 10.5851/kosfa.2020.e44

Yassin MH, Soliman MM, Mostafa SAE and Ali HAM, 2015. Antimicrobial effects of camel milk against some bacterial pathogens. J Food Nutr Res, 3(3): 162-168, doi: 10.12691/jfnr-3-3-6

Zambrowicz A, Pokora M, Setner B, D?browska A, Szo?tysik M et al., 2015. Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids, 47: 369-380, doi: 10.1007/s00726-014-1869-x

Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R et al., 2020. Lactoferrin and its derived peptides: An alternative for combating virulence mechanisms developed by pathogens. Molecules, 25(24): 5763, doi:10.3390/molecules25245763

Zenezini Chiozzi R, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S et al., 2016. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nano HPLC-high resolution mass spectrometry. Anal Bioanal Chem, 408: 5657-5666, doi: 10.1007/s00216-016-9672-z

Zhang W, Wu S, Cao J, Li H, Li Y et al., 2014. A preliminary study on anti-hypoxia activity of yak milk powder in vivo. Dairy Sci Technol, 94: 633-639

Zhang Y, Chen R, Ma H and Chen S, 2015. Isolation and identification of dipeptidyl peptidase IV-inhibitory peptides from trypsin/chymotrypsin-treated goat milk casein hydrolysates by 2D-TLC and LC–MS/MS. J Agric Food Chem, 63(40): 8819-8828, doi: 10.1021/acs.jafc.5b03062

Zou TB, He TP, Li HB, Tang HW, Xia EQ et al., 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules, 21(1): 72, doi: 10.3390/molecules21010072

Zwaal RF and Schroit AJ, 1997. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood, 89(4): 1121-1132, doi: 10.1182/blood.V89.4.1121

View pdf