Authors:
Citation: Banerjee D, Mukherjee J, Das PK, Ghosh PR and Das K, 2024. D. Banerjee1*, J. Mukherjee1, P. K. Das1, P. R. Ghosh1 and K. Das. Indian J Anim Health (2024), 63(2-Spl): 94-101, doi: https://doi.org/10.36062/ijah.2024.spl.03324
Chronic stress is a widespread condition with a profound negative impact on animal reproductive functions such as fertility, pregnancy and offspring production. The persistent activation of the hypothalamic-pituitary-gonadal (HPG) axis under chronic stress conditions leads to hormonal imbalances as elevated cortisol levels can suppress the reproductive
hormone secretion. Hormonal imbalances adversely affect key reproductive processes such as ovulation, spermatogenesis, fertilization and embryo development. In livestock, these impairments significantly reduce reproductive efficiency, hence contributing to substantial economic losses in animal production systems. Furthermore, chronic stress induces oxidative
stress, resulting in cellular damage to reproductive tissues and modulating immune system function, exacerbating the decline in reproductive health. Stressors which result into significant impact on animal production in daily basis are from poor managemental conditions, amongst which heat stress due to global climate change. All these stressors have compounded to reproductive challenges imposed by chronic stress. Heat stress, driven by higher ambient temperatures, further disrupts reproductive processes by altering hormonal balance, reducing gamete quality, impairing embryo survival and increasing pregnancy complications. The synergistic effect of chronic stress and heat stresses creates an additional burden on reproductive functions, particularly for less heat-intolerant livestock. This review critically explores the multifaceted mechanisms by which chronic stress disrupts reproductive function in animals, emphasizing the roles of hormonal dysregulation, oxidative stress and immune system alterations. Thus, addressing both environmental and physiological
factors is of utmost importance to improve the reproductive functions of domestic animals.
Reference
Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A and Gupta S, 2012. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol, 29: 1-31, doi: 10.1186/1477-7827-10-49
Agarwal A, Gupta S and Sharma R, 2005. Oxidative stress and its implications in female infertility- A clinician's perspective. Reprod Biomed Online, 11(5): 641-650, doi: 10.1016/s1472-6483(10)61174-1
Agarwal A, Gupta S, Sekhon L and Shah R, 2008. Redox considerations in female reproductive function and assisted reproduction: from molecular mechanisms to health implications. Antioxid Redox Signal, 10(8): 1375-1403, doi: 10.1089/ars.2007.1964
Agarwal A, Virk G, Ong C and du Plessis SS, 2014. Effect of oxidative stress on male reproduction. World J Mens Health, 32(1): 1-17, doi: 10.5534/wjmh.2014.32.1.1
Ahmadi S, Bashiri R, Ghadiri-Anari A and Nadjarzadeh A, 2016. Antioxidant supplements and semen parameters: An evidence based review. Int J Reprod Biomed, 14(12): 729-736
Aitken RJ and Baker MA, 2006. Oxidative stress, sperm survival, and fertility control. Mol Cell Endocrinol, 250(1-2): 66-69, doi: 10.1016/j.mce.2005.12.026
Baskerville TA and Douglas AJ, 2010. Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci Ther, 16(3): e92-12, doi: 10.1111/j.1755-5949.2010.00154.x
Besong EE, Ashonibare PJ, Obembe OO, Folawiyo MA, Adeyemi DH et al., 2023. Zinc protects against lead-induced testicular damage via modulation of steroidogenic and xanthine oxidase/uric acid/caspase 3-mediated apoptotic signaling in male Wistar rats. Aging Male, 26(1): 2224428, doi: 10.1080/13685538.2023.2224428
Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME et al., 2009. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol, 78(1): 73-83, doi: 10.1111/j.1365-2656.2008.01458.x
Calisi RM, Rizzo NO and Bentley GE, 2008. Seasonal differences in hypothalamic EGR-1 and GnIH expression following capture-handling stress in house sparrows (Passer domesticus). Gen Comp Endocrinol. 157(3): 283-287, doi: 10.1016/j.ygcen.2008.05.010
Casillas F, Betancourt M, Juárez-Rojas L, Ducolomb Y, López A et al., 2021. Chronic stress detrimentally affects in vivo maturation in rat oocytes and oocyte viability at all phases of the estrous cycle. Animals (Basel), 11(9): 2478, doi: 10.3390/ani11092478
Chen L, Thorup VM, Kudahl AB and Østergaard S, 2024. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J Dairy Sci, 107(5): 3207-3218, doi: 10.3168/jds.2023-24059
Coussons-Read ME, 2013. Effects of prenatal stress on pregnancy and human development: mechanisms and pathways. Obstet Med, 6(2): 52-57, doi: 10.1177/1753495X12473751
Dahlerup BR, Egsmose EL, Siersma V, Mortensen EL, Hedegaard M et al., 2018. Maternal stress and placental function, a study using questionnaires and biomarkers at birth. PLoS One, 13(11): e0207184, doi: 10.1371/journal.pone.0207184
Darbandi M, Darbandi S, Agarwal A, Sengupta P, Durairajanayagam D et al., 2018. Reactive oxygen species and male reproductive hormones. Reprod Biol Endocrinol, 16(1): 87, doi: 10.1186/s12958-018-0406-2
De Rensis F and Scaramuzzi RJ, 2003. Heat stress and seasonal effects on reproduction in the dairy cow- A review. Theriogenology, 60(6): 1139-1151, doi: 10.1016/s0093-691x(03)00126-2
Dhabhar FS, 2009. Enhancing versus suppressive effects of stress on immune function: implications for immunoprotection and immunopathology. Neuro-immunomodulation, 16(5): 300-317, doi: 10.1159/000216188
Dhabhar FS, 2014. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol Res, 58(2-3): 193-210, doi: 10.1007/s12026-014-8517-0
Dobson H and Smith RF, 2000. What is stress, and how does it affect reproduction? Anim Reprod Sci, 2(60-61): 743-752, doi: 10.1016/s0378-4320(00)00080-4
Dutta S, Sengupta P, Slama P and Roychoudhury S, 2021. Oxidative stress, testicular inflammatory pathways, and male reproduction. Int J Mol Sci, 22(18): 10043, doi: 10.3390/ijms221810043
Elenkov IJ and Chrousos GP, 2002. Stress hormones, pro-inflammatory and anti-inflammatory cytokines, and autoimmunity. Ann N Y Acad Sci, 966: 290-303, doi: 10.1111/j.1749-6632.2002.tb04229.x
Entringer S, 2013. Impact of stress and stress physiology during pregnancy on child metabolic function and obesity risk. Curr Opin Clin Nutr Metab Care, 16(3): 320-327, doi: 10.1097/MCO.0b013e32835e8d80
Gitsi E, Livadas S and Argyrakopoulou G, 2024. Nutritional and exercise interventions to improve conception in women suffering from obesity and distinct nosological entities. Front Endocrinol (Lausanne), 28(15): 1426542, doi: 10.3389/fendo.2024.1426542
Hajjar T, Soleymani F and Vatanchian M, 2020. Protective effect of vitamin C and zinc as an antioxidant against chemotherapy-induced male reproductive toxicity. J Med Life, 13(2): 138-143, doi: 10.25122/jml-2019-0107
Hong CY, Park JH, Ahn RS, Im SY, Choi HS et al., 2004. Molecular mechanism of suppression of testicular steroidogenesis by pro-inflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol, 24(7): 2593-604, doi: 10.1128/MCB.24.7.2593-2604.2004
Hulin V, Delmas V, Girondot M, Godfrey MH and Guillon JM, 2009. Temperature-dependent sex determination and global change: Are some species at greater risk? Oecologia, 160(3): 493-506
Jagtap A, Jagtap B, Jagtap R, Lamture Y and Gomase K, 2023. Effects of prenatal stress on behavior, cognition, and psychopathology: A comprehensive review. Cureus, 15(10): e47044, doi: 10.7759/cureus.47044
Josefson CC, De Moura Pereira L and Skibiel AL, 2023. Chronic stress decreases lactation performance. Integr Comp Biol, 63(3): 557-568, doi: 10.1093/icb/icad044
Kaltsas A, 2023. Oxidative stress and male infertility: The protective role of antioxidants. Medicina (Kaunas), 59(10): 1769, doi: 10.3390/medicina59101769
Khambata K, Modi DN and Gupta SK, 2021. Immunoregulation in the testis and its implication in fertility and infections. Explor Immunol, 1: 309-324, doi: 10.37349/ei.2021.00021
Kirby ED, Geraghty AC, Ubuka T, Bentley GE and Kaufer D, 2009. Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats. Proc Natl Acad Sci, 106 (27): 11324-11329, doi: 10.1073/pnas.0901176106
Levine S and Muneyyirci-Delale O, 2018. Stress-induced hyperprolactinemia: pathophysiology and clinical approach. Obstet Gynecol Int, 3: 9253083, doi: 10.1155/2018/9253083
Majer AD, Paitz RT, Tricola GM, Geduldig JE, Litwa HP et al., 2023. The response to stressors in adulthood depends on the interaction between prenatal exposure to glucocorticoids and environmental context. Sci Rep, 13(1): 6180, doi: 10.1038/s41598-023-33447-x
Marai IFM and Habeeb AAM, 2010. Buffalo's biological functions as affected by heat stress- A review. Livest Sci, 127(2-3): 89-109, doi: 10.1016/j.livsci.2009.08.001
Mbiydzenyuy N and Qulu LA, 2024. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab Brain Dis, 39(8): 1613-1636, doi: 10.1007/s11011-024-01393-w
Millie Rincón-Cortés, 2024. Stress-induced modulation of maternal behavior and mesolimbic dopamine function, Curr Opin Behav Sci, 60: 101445, doi: 10.1016/j.cobeha.2024.101445
Moberg GP and Mench JA (Eds.), 2000. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare. CABI Publishing, New York, pp 1-21, doi: 10.1079/9780851993591.0001
Ojo OA, Nwafor-Ezeh PI, Rotimi DE, Iyobhebhe M, Ogunlakin AD et al., 2023. Apoptosis, inflammation, and oxidative stress in infertility: A mini review. Toxicol Rep, 10: 448-462, doi: 10.1016/j.toxrep.2023.04.006
Olff M, Frijling JL, Kubzansky LD, Bradley B, Ellenbogen MA et al., 2013. The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 38(9): 1883-1894, doi: 10.1016/j.psyneuen.2013.06.019
Palomba S, Daolio J, Romeo S, Battaglia FA, Marci R et al., 2018. Lifestyle and fertility: The influence of stress and quality of life on female fertility. Reprod Biol Endocrinol, 16(1): 113, doi: 10.1186/s12958-018-0434-y
Pankhurst NW and Munday PL, 2011. Effect of climate change on fish reproduction and early life history stages. Mar Freshw Res, 62(9): 1015-1026
Picard M, Juster RP and McEwen BS, 2014. Mitochondrial allostatic load puts the 'gluc' back in glucocorticoids. Nat Rev Endocrinol, 10(5): 303-310, doi: 10.1038/nrendo.2014.22
Poitras M, Lebeau M and Plamondon H, 2024. The cycle of stress: A systematic review of the impact of chronic psychological stress models on the rodent estrous cycle. Neurosci Biobehav Rev, 162: 105730, doi: 10.1016/j.neubiorev.2024.105730
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Md. Montaser A et al., 2022. Importance of antioxidant supplementation during in vitro maturation of mammalian oocytes. Vet Sci, 9(8): 439, doi: 10.3390/vetsci9080439
Rivier C and Rivest S, 1991. Effect of stress on the activity of the hypothalamic-pituitary-gonadal axis: peripheral and central mechanisms. Biol Reprod, 45(4): 523-532, doi: 10.1095/biolreprod45.4.523
Rojas-Downing MM, Nejadhashemi AP, Harrigan T and Woznicki SA, 2017. Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag, 16: 145-163, doi: 10.1016/j.crm.2017.02.001
Romero LM, 2004. Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol, 19(5): 249-255, doi: 10.1016/j.tree.2004.03.008
Ryan MJ, Dudash HJ, Docherty M, Geronilla KB, Baker BA et al., 2010. Vitamin E and C supplementation reduces oxidative stress, improves antioxidant enzymes and positive muscle work in chronically loaded muscles of aged rats. Exp Gerontol, 45(11): 882-895, doi: 10.1016/j.exger.2010.08.002
Samir M, Glister C, Mattar D, Laird M and Knight PG, 2017. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro. Reproduction, 154(1): 35-49, doi: 10.1530/REP-17-0053
Sapolsky RM, 2000. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry, 57(10): 925-935, doi: 10.1001/archpsyc.57.10.925
Sapolsky RM, Romero LM and Munck AU, 2000. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev, 21: 55-89
Sengupta P, Dutta S and Krajewska-Kulak E, 2017. The disappearing sperms: analysis of reports published between 1980 and 2015. Am J Mens Health, 11(4): 1279-1304, doi: 10.1177/1557988316643383
Sengupta R, Sengupta E, Dhakal BK, Thakur AR and Ahnn J, 2004. Vitamin C and vitamin E protect the rat testes from cadmium-induced reactive oxygen species. Mol Cells, 17(1): 132-139
Shen Y, You Y, Zhu K, Fang C, Yu X et al., 2022. Bibliometric and visual analysis of blood-testis barrier research. Front Pharmacol, 13: 969257, doi: 10.3389/fphar.2022.969257
Song J, Xiao L, Zhang Z, Wang Y, Kouis P et al., 2024. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front Cell Dev Biol, 12: 1347286, doi: 10.3389/fcell.2024.1347286
Straub RH, 2007. The complex role of estrogens in inflammation. Endocr Rev, 28(5): 521-574, doi: 10.1210/er.2007-0001
Tilbrook AJ, Turner AI and Clarke IJ, 2000. Effects of stress on reproduction in non-rodent mammals: The role of glucocorticoids and sex differences. Rev Reprod, 5(2): 105-113, doi: 10.1530/ror.0.0050105
Tsutsui K, Ubuka T, Bentley GE and Kriegsfeld LJ, 2012. Gonadotropin-inhibitory hormone (GnIH): discovery, progress and prospect. Gen Comp Endocrinol, 177(3): 305-314, doi: 10.1016/j.ygcen.2012.02.013
Tsutsui K, Ubuka T, Bentley GE and Kriegsfeld LJ, 2013. Review: regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals. Front Neurosci, 7: 60, doi: 10.3389/fnins.2013.00060
Turner TT and Lysiak JJ, 2008. Oxidative stress: A common factor in testicular dysfunction. J Androl, 29(5): 488-498, doi: 10.2164/jandrol.108.005132
Wagenmaker ER, Breen KM, Oakley AE, Pierce BN, Tilbrook AJ et al., 2009. Cortisol interferes with the estradiol-induced surge of luteinizing hormone in the ewe. Biol Reprod, 80(3): 458-463, doi: 10.1095/biolreprod.108.074252
Webster Marketon JI and Glaser R, 2008. Stress hormones and immune function. Cell Immunol, 252(1-2): 16-26, doi: 10.1016/j.cellimm.2007.09.006
Whirledge S and Cidlowski JA, 2010. Glucocorticoids, stress, and fertility. Minerva Endocrinol, 35(2): 109-125
Whirledge S and Cidlowski JA, 2013. A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary. Endocrinology, 154(12): 4450-4468, doi: 10.1210/en.2013-1652
Xiong X, Wu Q, Zhang L, Gao S, Li R et al., 2022. Chronic stress inhibits testosterone synthesis in Leydig cells through mitochondrial damage via Atp5a1. J Cell Mol Med, 26(2): 354-363, doi: 10.1111/jcmm.17085
Yamamoto Y, Kuwahara A, Taniguchi Y, Yamasaki M, Tanaka Y et al., 2015. Tumor necrosis factor alpha inhibits ovulation and induces granulosa cell death in rat ovaries. Reprod Med Biol, 14(3): 107-115, doi: 10.1007/s12522-014-0201-5
Yan F, Zhao Q, Li Y, Zheng Z, Kong X et al., 2022. The role of oxidative stress in ovarian aging: A review. J Ovarian Res, 1: 100, doi: 10.1186/s13048-022-01032-x
Yang H, Xie Y, Yang D and Ren D, 2017. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget, 8(15): 25310-25322, doi: 10.18632/oncotarget.15813
Yang X, Liu P, Zhang X, Zhang J, Cui Y et al., 2021. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. Ecotoxicol Environ Saf, 225: 112702, doi: 10.1016/j.ecoenv.2021.112702
Ye L, Huang W, Liu S, Cai S, Hong L et al., 2021. Impacts of immunometabolism on male reproduction. Front Immunol, 12: 658432, doi: 10.3389/fimmu.2021.658432
Zijlmans MA, Riksen-Walraven JM and de Weerth C, 2015. Associations between maternal prenatal cortisol concentrations and child outcomes: A systematic review. Neurosci Biobehav Rev: 1-24, doi: 10.1016/j.neubiorev.2015.02.015
Zitzmann M, 2024.Testosterone deficiency and chronic kidney disease. J Clin Transl Endocrinol, 37: 100365, doi: 10.1016/j.jcte.2024.100365
Zou P, Wang X, Yang W, Liu C, Chen Q et al., 2019. Mechanisms of stress-induced spermatogenesis impairment in male rats following unpredictable chronic mild stress (uCMS). Int J Mol Sci, 20(18): 4470, doi: 10.3390/ijms20184470