Authors:
Citation: Pal P, Josan F, Biswal P and Perveen S, 2024. Climate change and livestock reproductive health: Mechanisms, adaptation and mitigation strategies. Indian J Anim Health, 63(2-Spl): 82-93, doi: https://doi.org/10.36062/ijah.2024.spl.02124
The livestock sector is a critical contributor to global food security and economic growth, providing essential products such as meat, milk and fibres while supporting rural livelihoods. However, climate change poses significant challenges to this sector, including increased heat stress, altered rainfall patterns and reduced feed availability, negatively affecting animal productivity, reproduction and health. Particularly, all the reproductive parameters including follicular growth and development, induction of ovulation, estrus expression, endocrine status, luteolytic mechanism, conception rate, fetal and embryonic growth etc. in females and semen parameters in males are altered. It eventually impacts the productivity of the animals and results in economic loss for the farmer or producer. Implementation of appropriate mitigation strategies like housing and nutrition management, assisted reproductive technologies, hormonal interventions, selection of heat tolerant breeds and reduction of livestock origin greenhouse gases can ensure sustainable livestock production in this scenario.
Reference
Aarif O and Aggarwal A, 2016. Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in Murrah buffaloes. Int J Biometeorol, 60: 465-473, doi: 10.1007/s00484-015-1044-4
Aarif O, Aggarwal A and Sheikh AA, 2023. Evaporative cooling in late gestation heat-stressed transition Murrah buffaloes improves milk production through hormone-metabolite interaction. Biol Rhythm Res, 54(2): 199-212, doi: 10.1080/09291016.2022.2129487
Aggarwal A and Upadhyay R, 2013. Heat Stress and Hormones. In: Heat Stress and Animal Productivity, pp 27-51, doi: 10.1007/978-81-322-0879-2_2
Ali A, 2015. Seasonal variations of the ovarian activity and pregnancy rate in the Egyptian buffalo cows (Bubalus bubalis). Tropic Anim Health Prod, 47: 815-818, doi: 10.1007/s11250-015-0793-8
Arrebola F and Abecia JA, 2017. Effects of season and artificial photoperiod on semen and seminal plasma characteristics in bucks of two goat breeds maintained in a semen collection center. Vet World, 10(5): 521-525, doi: 10.14202/vetworld.2017.521-525
Azawi OI and Ismaeel MA, 2012. Effects of seasons on some semen parameters and bacterial contamination of Awassi ram semen. Reprod Domest Anim, 47(3): 403-406, doi: 10.1111/j.1439-0531.2011.01888.x
Ba??ninait? D, Džermeikait? K and Antanaitis R, 2022. Global warming and dairy cattle: How to control and reduce methane emission. Animals, 12(19): 2687
Badinga L, Thatcher WW, Diaz T, Drost M and Wolfenson D, 1993. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology, 39(4): 797-810, doi: 10.1016/0093-691x(93)90419-6
Bali? IM, Milinkovi?-Tur S, Samardžija M and Vince S, 2012. Effect of age and environmental factors on semen quality, glutathione peroxidase activity and oxidative parameters in Simmental bulls. Theriogenology, 78(2): 423-431, doi: 10.1016/j.theriogenology.2012.02.022
Baumgard LH, Rhoads RP, Rhoads ML, Gabler NK, Ross J et al., 2012. Impact of Climate Change on Livestock Production. In: Sejian V, Naqv S, Ezeji T, Lakritz J, Lal R (eds) Environmental Stress and Amelioration in Livestock Production. Springer, Berlin, pp 413-468, doi: 10.1007/978-3-642-29205-7_15
Bhutta MF, Tariq M, Tunio MT, Sufyan A, Rauf HA et al., 2020. Season-induced changes in seminal characteristics of Sahiwal breeding bulls. Adv Anim Vet Sci, 8(6): 601-607, doi: 10.17582/journal.aavs/2020/8.6.601.607
Bindari YR, Shrestha S, Shrestha N and Gaire TN, 2013. Effects of nutrition on reproduction- A review. Adv Appl Sci Res, 4(1): 421-429
Bohmanova J, Misztal I and Cole JB, 2007. Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci, 90(4): 1947-1956, doi: 10.3168/jds.2006-513
Burton I, Bizikova L, Dickinson T and Howard Y, 2015. Integrating Adaptation into Policy: Upscaling Evidence from Local to Global. In: Integrating Climate Change Actions into Local Development, Routledge, pp 371-376
Chauhan SS, Rashamol VP, Bagath M, Sejian V and Dunshea FR, 2021. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int J Biometeorol, 65: 1231-44
Collier RJ, Baumgard LH, Zimbelman RB and Xiao Y, 2019. Heat stress: physiology of acclimation and adaptation. Anim Front, 9(1): 12-19, doi: 10.1093/af/vfy031
Collier RJ, Doelger SG, Head HH, Thatcher WW and Wilcox CJ, 1982. Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. J Anim Sci, 54(2): 309-319, doi: 10.2527/jas1982.542309x
Conte G, Ciampolini R, Cassandro M, Lasagna E, Calamari L et al., 2018. Feeding and nutrition management of heat-stressed dairy ruminants. Ital J Anim Sci, 17(3): 604-620, doi: 10.1080/1828051X.2017.1404944
Dash S, Chakravarty AK, Sah V, Jamuna V, Behera R et al., 2015. Influence of temperature and humidity on pregnancy rate of Murrah buffaloes under subtropical climate. Asian-Australas J Anim Sci, 28(7): 943-950, doi: 10.5713/ajas.14.0825
Dash S, Chakravarty AK, Singh A, Behera R, Upadhyay A et al., 2014. Determination of critical heat stress zone for fertility traits using temperature humidity index in Murrah buffaloes. Indian J Anim Sci, 84(11): 1181-1184, doi: 10.56093/ijans.v84i11.44722
Dikmen S and Hansen PJ, 2009. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J Dairy Sci, 92(1): 109-116, doi: 10.3168/jds.2008-1370
Dono G, Cortignani R, Doro L, Giraldo L, Ledda L et al., 2013. Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems. Agric Sys, 117: 1-12, doi: 10.1016/j.agsy.2013.01.005
Dutt RH, 1964. Detrimental effects of high ambient temperature on fertility and early embryo survival in sheep. Int J Biometeorol, 8: 47-56, doi: 10.1007/BF02186927
El-Wishy AB, 2013. Fertility of Holstein cattle in a subtropical climate of Egypt. Iran J Appl Anim Sci, 3(1): 45-51
Etkin D and Ho E, 2007. Climate change: perceptions and discourses of risk. J Risk Res, 10(5): 623-641, doi: 10.1080/13669870701281462
Gangwar PC, Branton C and Evans DL, 1965. Reproductive and physiological responses of Holstein heifers to controlled and natural climatic conditions. J Dairy Sci, 48(2): 222-227, doi: 10.3168/jds.S0022-0302(65)88200-5
Garcia-Ispierto I, López-Gatius F, Bech-Sabat G, Santolaria P, Yániz JL et al., 2007. Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology, 67(8): 1379-1385, doi: 10.1016/j.theriogenology.2007.02.009
Getu A, 2015. The effects of climate change on livestock production, current situation and future consideration. Int J Agric Sci, 5(3): 494-499
Ghosh C, Prasad S, Datta S, Roy DC, Roy A et al., 2018. Effect of cooling and concentrate feeding on performances of Karan Fries cattle under loose housing system. Int J Curr Microbiol App Sci, 7(12): 2657-2670
Hance J, 2014. Booming populations, rising economies, threatened biodiversity: the tropics will never be the same. Mongabay, available at: https://news.mongabay.com/2014/07/booming-populations-rising-economies-threatened-biodiversity-the-tropics-will-never-be-the-same/
Horowitz M, 2002. From molecular and cellular to integrative heat defence during exposure to chronic heat. Comp Biochem Physiol Part A: Mol Integr Physiol, 131(3): 475-483, doi: 10.1016/S1095-6433(01)00500-1
Hussein F, Metwally K and El-Nemr HS, 2024. Reproductive performance of buffalo-heifers under stressful condition. Alex J Vet Sci, 80(1): 156, doi: 10.5455/ajvs.178804
Ingraham RH, Stanley RW and Wagner WC, 1976. Relationship of temperature and humidity to conception rate of Holstein cows in Hawaii. J Dairy Sci, 59(12): 2086-2090
IPCC, 2019. Global Warming of 1.5°C. Available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Full_Report_LR.pdf
IPCC, 2024. Climate Change Widespread, Rapid, and Intensifying. Available at: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/
Jakhar V, Vinayak AK and Singh KP, 2016. Genetic evaluation of performance attributes in Murrah buffaloes. Haryana Vet, 55 (1): 66-69
Janakiraman K, 1978. Control and Optimizing Reproductive Cycle in Buffaloes. In: Proc. FAO/SIDA Seminar on Buffalo Reproduction and Artificial Insemination, Karnal, India, pp 220-225
Kastelic JP, 2013. Male involvement in fertility and factors affecting semen quality in bulls. Anim Front, 3(4): 20-25, doi: 10.2527/af.2013-0029
Khan I, Mesalam A, Heo YS, Lee SH, Nabi G et al., 2023. Heat stress as a barrier to successful reproduction and potential alleviation strategies in cattle. Animals, 13(14): 2359, doi: 10.3390/ani13142359
Khodaei-Motlagh M, Shahneh AZ, Masoumi R and Derensis F, 2011. Alterations in reproductive hormones during heat stress in dairy cattle. Afr J Biotechnol, 10(29): 5552-5558
Kleemann DO and Walker SK, 2005. Fertility in South Australian commercial Merino flocks: relationships between reproductive traits and environmental cues. Theriogenology, 63(9): 2416-2433, doi: 10.1016/j.theriogenology.2004.09.052
Krishnan G, Bagath M, Pragna P, Vidya MK, Aleena J et al., 2017. Mitigation of the Heat Stress Impact in Livestock Reproduction. In book: Theriogenology, pp 64-86, doi: 10.5772/intechopen.69091
Lindsay DR, Knight TW, Smith JF and Oldham CM, 1975. Studies in ovine fertility in agricultural regions of Western Australia: ovulation rate, fertility and lambing performance. Aust J Agr Res, 26(1): 189-198, doi: 10.1071/AR9750189
Megahed GA, Anwar MM, Wasfy SI and Hammadeh ME, 2008. Influence of heat stress on the cortisol and oxidant?antioxidants balance during oestrous phase in buffalo?cows (Bubalus bubalis): thermo?protective role of antioxidant treatment. Reprod Domest Anim, 43(6): 672-677, doi: 10.1111/j.1439-0531.2007.00968.x
Molinaro A, 2022. Animal Agriculture's Greenhouse Gas Emissions Explained. Compassion in World Farming
Morrell JM, 2020. Heat stress and bull fertility. Theriogenology, 153: 62-67, doi: 10.1016/j.theriogenology.2020.05.014
Morton JM, Tranter WP, Mayer DG and Jonsson NN, 2007. Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J Dairy Sci, 90(5): 2271-2278, doi: 10.3168/jds.2006-574
Mubaya CP, Njuki J, Mutsvangwa EP, Mugabe FT and Nanja D, 2012. Climate variability and change or multiple stressors? Farmer perceptions regarding threats to livelihoods in Zimbabwe and Zambia. J Environ Manage, 102: 9-17, doi: 10.1016/j.jenvman.2012.02.005
Nabenishi H, Ohta H, Nishimoto T, Morita T, Ashizawa K et al., 2011. Effect of the temperature-humidity index on body temperature and conception rate of lactating dairy cows in southwestern Japan. J Reprod Dev, 57(4): 450-456, doi: 10.1262/jrd.10-135t
Nasr MA, 2017. The potential effect of temperature-humidity index on productive and reproductive performance of buffaloes with different genotypes under hot conditions. Environ Sci Pollut Res Int, 24(22): 18073-18082, doi: 10.1007/s11356-017-9450-2
Nguyen TPL, Mula L, Cortignani R, Seddaiu G, Dono G et al. 2016a. Perceptions of present and future climate change impacts on water availability for agricultural systems in the western Mediterranean region. Water, 8(11): 523, doi: 10.3390/w8110523
Nguyen TPL, Seddaiu G, Virdis SGP, Tidore C, Pasqui M et al., 2016b. Perceiving to learn or learning to perceive? Understanding farmers' perceptions and adaptation to climate uncertainties. Agric Sys, 143: 205-216, doi: 10.1016/j.agsy.2016.01.001
Nkuruma E, 2023. The Effects of environmental contaminants on animal health and reproduction. J Anim Health, 3(1): 1-12
Ostrom E, 2010. Polycentric systems for coping with collective action and global environmental change. Glob Environ Change (20th Anniversary Special Issue), 20(4): 550-557, doi: 10.1016/j.gloenvcha.2010.07.004
Ozawa M, Tabayashi D, Latief TA, Shimizu T, Oshima I et al., 2005.Alterations in follicular dynamics and steroidogenic abilities induced by heat stress during follicular recruitment in goats. Reproduction, 129(5): 621-630, doi: 10.1530/rep.1.00456
Pal P and Dar MR, 2020. Induction and Synchronization of Estrus. In: Aral, F., Payan-Carreira, R., & Quaresma, M. (Eds.) Animal Reproduction in Veterinary Medicine, pp1-14
Pandey V, Nigam R, Singh P, Sharma A, Saxena A et al., 2014. Influence of season on biochemical attributes of Bhadawari buffalo bull semen: effect of temperature and humidity. J Anim Res, 4(2): 201-209, doi: 10.5958/2277-940X.2014.00006.0
Parveen K, Gupta AK, Mumtaz S, Khan AH and Rathore A, 2022. Impact of heat stress on reproductive performance of Sahiwal cows. Indian J Dairy Sci, 75(2): 167-172, doi: 10.33785/IJDS.2022.v75i02.011
Pasqui M and DiGiuseppe E, 2019. Climate change, future warming, and adaptation in Europe. Anim Front, 9(1): 6-11, doi: 10.1093/af/vfy036
Razdan MN, 1990. Buffalo performance in relation to climatic environment. Proceedings, II World Buffalo Congress, New Delhi, India, December 1988. Volume II, Part II. Invited papers and special lectures, pp 173-186 ref. 38
Reddy AO, Ramesha KP and Rao MK, 1999. Effect of climate on the incidence of oestrus, conception and cycle length in Murrah buffaloes. Ind J Anim Sci, 69(7): 485-489
Roth Z, 2017. Effect of heat stress on reproduction in dairy cows: insights into the cellular and molecular responses of the oocyte. Annu Rev Anim Biosci, 5(1): 151-170, doi: 10.1146/annurev-animal-022516-022849
Sawyer GJ, Lindsay DR and Martin GB, 1979. The influence of radiant heat load on reproduction in the Merino ewe. III.* Duration of oestrus, cyclical oestrous activity, plasma progesterone, LH levels and fertility of ewes exposed to high temperatures before mating. Crop Pasture Sci, 30(6): 1151-1162, doi: 10.1071/AR9791151
Shafie MM, Mourad H, Barkawi A, Aboul-Ela MB and Mekawy Y, 1982. Serum progesterone and oestradiol concentration in the cycling buffalo. Tropic AnimProdu, 7(4): 301-308
Sharma M, Yaqoob B, Singh A, Sharma N and Rawat S, 2017. Effect of temperature humidity index on semen quality of bovine bull. Int J Curr Microbiol Appl Sci, 6(12): 1822-1830, doi: 10.20546/ijcmas.2017.612.206
Singh J, Nanda AS and Adams GP, 2000. The reproductive pattern and efficiency of female buffaloes. Anim Reprod Sci, 60-61: 593-604, doi: 10.1016/s0378-4320(00)00109-3
Singh N and Chaudhary KC, 1992. Plasma hormonal and electrolyte alterations in cycling buffaloes (Bubalus bubalis) during hot summer months. Int J Biometeorol, 36(3): 151-154, doi: 10.1007/BF01224818
Singh SV, Hooda OK, Narwade B, Baliyan B and Upadhyay RC, 2014. Effect of cooling system on feed and water intake, body weight gain and physiological responses of Murrah buffaloes during summer conditions. Ind J Dairy Sci, 67(5): 426-431
Takkar OP, Singh M and Varman PN, 1983. Progesterone levels vis-a-vis anoestrum in buffaloes concurrent with profile during stage of oestrus cycle. Ind J Dairy Sci, 36(2): 125-128
The white house office of domestic climate policy, 2021. U.S. Methane Emissions Reduction Action Plan
United Nations, 2024. Revision of World Population Prospects. https://population.un.org/wpp/
Verma KK, Prasad S, Mohanty TK, Kumaresan A, Layek SS et al., 2016. Effect of short-term cooling on core body temperature, plasma cortisol and conception rate in Murrah buffalo heifers during hot-humid season. J Appl Anim Res, 44(1): 281-286, doi: 10.1080/09712119.2015.1031782
Wilson SJ, Marion RS, Spain JN, Spiers DE, Keisler DH et al., 1998. Effects of controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J Dairy Sci, 81(8): 2124-2131, doi: 10.3168/jds.S0022-0302(98)75788-1
Wolfenson D, Roth Z and Meidan R, 2000. Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim Reprod Sci, 60-61: 535-547, doi: 10.1016/S0378-4320(00)00102-0
Wright IA, Tarawali S, Blümmel M, Gerard B, Teufel N et al., 2012. Integrating crops and livestock in subtropical agricultural systems. J Sci Food Agric, 92(5): 1010-1015, doi: 10.1002/jsfa.4556