Authors:
Citation: Agrawal V, Tiwari SP, Choudhary NS and Shrivastava N, 2024. Technological advances for sustainable helminth control in animal health amidst changing climate. Indian J Anim Health, 63(2-Spl): 31-42, doi: https://doi.org/10.36062/ijah.2024.spl.00124
Abstract
Effective management of helminth infections in livestock plays a vital role in achieving sustainable livestock production and optimizing protein yields, particularly within the framework of climate change adaptation and efforts to lower greenhouse gas emissions. This paper explores comprehensive management strategies for helminth infections in domesticated ruminants, focusing on the complexities and potential solutions. It discusses advancements in diagnostic technologies, vaccines, selective breeding, and precision livestock farming (PLF) to enhance disease detection and control. Emphasis is placed on sustainable anthelmintic use and the search for novel compounds. Integrating these strategies supports the One Health approach, addressing the interconnected health of animals, humans, and ecosystems. This multidisciplinary approach aims to improve livestock health, productivity, and environmental sustainability, while tackling issues such as anthelmintic resistance and evolving helminth infection patterns influenced by climate, land use, and farming practices. Modern diagnostic technologies, including automated image processing and isothermal DNA amplification, alongside sensor and wearable technologies, enable real-time monitoring of animal health parameters and environmental conditions. These innovations promise enhanced disease control on farms, leveraging predictive modeling and innovative diagnostic markers for efficient disease management. This integrated approach facilitates timely intervention, ensuring sustainable livestock production and welfare enhancement through rapid, cost-effective diagnostics.
Reference
Abbas H, Rizwan HM, Younus M, Farid MU, Naeem MA et al., 2023. Parasite Control Strategies: Trace Elements and Minerals. In: Parasitism and Parasitic Control in Animals: Strategies for the Developing World, pp 201-216, doi: 10.1079/9781800621893.0013
Alim MA, Fu Y, Wu Z, Zhao SH and Cao J, 2016. Single nucleotide polymorphisms of Toll-like receptors and association with Haemonchus contortus infection in goats. Pak Vet J, 36(3): 286-291
Bhanuprakash V, Indrani BK, Hosamani M, Balamurugan V and Singh RK, 2009. Bluetongue vaccines: the past, present and future. Expert Rev Vaccines, 8(2): 191-204, doi: 10.1586/14760584.8.2.191
Bishop SC and Stear MJ, 2003. Modeling of host genetics and resistance to infectious diseases: understanding and controlling nematode infections. Vet Parasitol, 115(2): 147-166, doi: 10.1016/s0304-4017(03)00204-8
Bricarello PA, Longo C, da Rocha RA and Hötzel MJ, 2023. Understanding animal-plant-parasite interactions to improve the management of gastrointestinal nematodes in grazing ruminants. Pathogens, 12(4): 531, doi: 10.3390/pathogens12040531
Charlier J, Rinaldi L, Musella V, Ploeger HW, Chartier C et al., 2020. Initial assessment of the economic burden of major parasitic helminth infections to the ruminant livestock industry in Europe. Prev Vet Med, 182: 105103
Diemert DJ, Pinto AG, Freire J, Jariwala A, Santiago H et al., 2012. Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: implications for the development of vaccines against helminths. J Allergy Clin Immunol, 130(1): 169-176
Emery DL, Hunt PW and Le Jambre LF, 2016. Haemonchus contortus: The then and now, and where to from here? Int J Parasitol, 46(12): 755-769, doi: 10.1016/10.1016/j.ijpara.2016.07.001
Feucherolles M, Poppert S, Utzinger J and Becker SL, 2019. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: A systematic review. Parasit Vectors, 12: 1-13, doi: 10.1016/10.1186/s13071-019-3493-9
Geary TG, 2012. Mechanism-based screening strategies for anthelmintic discovery. In: Caffrey C, editor. Parasitic Helminths: Targets, Drugs and Vaccines. Wiley-VCH, pp 123-134
Green LE, Huxley JN, Banks C and Green MJ, 2014. Temporal associations between low body condition, lameness and milk yield in a UK dairy herd. Prev Vet Med, 113(1): 63-71, doi: 10.1016/j.prevetmed.2013.10.009
Hodgkinson JE, Kaplan RM, Kenyon F, Morgan ER, Park AW et al., 2019. Refugia and anthelmintic resistance: concepts and challenges. Int J Parasitol Drugs Drug Resist, 10: 51-57, doi: 10.1016/j.ijpddr.2019.05.001
Jack C, Hotchkiss E, Sargison ND, Toma L, Milne C et al., 2017. A quantitative analysis of attitudes and behaviours concerning sustainable parasite control practices from Scottish sheep farmers. Prev Vet Med, 139: 134-145, doi: 10.1016/10.1016/j.prevetmed.2017.01.018
Jiménez B, Maya C, Velásquez G, Torner F, Arambula F et al., 2016. Identification and quantification of pathogenic helminth eggs using a digital image system. Exp Parasitol, 166: 164-172, doi: 10.1016/10.1016/j.exppara.2016.04.016
Jonsson NN, MacLeod M, Hayward A, McNeilly T, Ferguson KD et al., 2022. Liver fluke in beef cattle- impact on production efficiency and associated greenhouse gas emissions estimated using causal inference methods. Prev Vet Med, 200: 105579, doi: 10.1016/10.1016/j.prevetmed.2022.105579
Karanikola SN, Krücken J, Ramünke S, de Waal T, Höglund J et al., 2015. Development of a multiplex fluorescence immunological assay for the simultaneous detection of antibodies against Cooperia oncophora, Dictyocaulus viviparus, and Fasciola hepatica in cattle. Parasit Vectors, 8: 335, doi: 10.1186/s13071-015-0924-0
Kotze AC, Gilleard JS, Doyle SR and Prichard RK, 2020. Challenges and opportunities for the adoption of molecular diagnostics for anthelmintic resistance. Int J Parasitol Drugs Drug Resist, 14: 264-273, doi: 10.1016/10.1016/j.ijpddr.2020.11.005
Maier GU, Breitenbuecher J, Gomez JP, Samah F, Fausak E et al., 2022. Vaccination for the prevention of neonatal calf diarrhea in cow-calf operations: A scoping review. Vet Anim Sci, 15: 100238, doi: 10.1016/10.1016/j.vas.2022.100238
Rashid MH, Stevenson MA, Waenga S, Mirams G, Campbell AJD et al., 2018. Comparison of McMaster and FECPAKG2 methods for counting nematode eggs in the faeces of alpacas. Parasit Vectors, 11: 278, doi: 10.1016/10.1186/s13071-018-2861-1
Rose H, Wang T, van Dijk J and Morgan ER, 2015. GLOWORM-FL: A simulation model of the effects of climate and climate change on the free-living stages of gastro-intestinal nematode parasites of ruminants. Ecol Model, 297: 232-245, doi: 10.1016/j.ecolmodel.2014.11.033
Sawangsoda P, Sithithaworn J, Tesana S, Pinlaor S, Boonmars T et al., 2012. Diagnostic values of parasite-specific antibody detections in saliva and urine in comparison with serum in opisthorchiasis. Parasitol Int, 61(1): 196-202, doi: 10.1016/j.parint.2011.06.009
Tyler AD, Mataseje L, Urfano CJ, Schmidt L, Antonation KS et al., 2018. Evaluation of Oxford Nanopore’s MinION sequencing device for microbial whole genome sequencing applications. Sci Rep, 8(1): 10931, doi: 10.1038/s41598-018-29334-5
Weeks JC, Robinson KJ, Lockery SR and Roberts WM, 2018. Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device. Int J Parasitol Drugs Drug Resist, 8(3): 607-628, doi: 10.1016/j.ijpddr.2018.10.003
Weinstein DH, Derijke S, Chow CC, Foruraghi L, Zhao X et al., 2013. A new method for determining gastric acid output using a wireless pH?sensing capsule. Aliment Pharmacol Ther, 37(12): 1198-1209, doi: 10.1111/apt.12325
Wu Z, Wang L, Li J, Wang L, Wu Z et al., 2019. Extracellular vesicle-mediated communication within host-parasite interactions. Front Immunol, 9: 3066, doi: 10.3389/fimmu.2018.03066