Research Article

Effects of FGF5-mediated LncRNA on the skin fibroblast growth of Liaoning Cashmere goats

  • Views: 65
  • Pages: 277 - 285
Authors:
*Corresponding Author Email:  jm6688210@163.com

Received -  27.12.2022, Accepted -  02.07.2023, Published -  01.12.2023

Citation:  Jin M, Liu XY, Lu YP, Ni P, Piao J and Piao JA, 2023. Effects of FGF5-mediated LncRNA on the skin fibroblast growth of Liaoning Cashmere goats. Indian J Anim Health, 62(2): 277-285, doi: https://doi.org/10.36062/ijah.2023.16322

Abstract

In the present study, long non-coding RNA associated with hair growth in the goats was screened and identified using RNA sequencing technology, and its impact on the growth of Cashmere goats treated with fibroblast growth factor 5 was evaluated. GO and KEGG analysis confirmed that the best treatment condition of FGF-5 was 10-4 g/L treatment 72H (F4_72H). We studied cystathionine at high and low expression of LncRNA β synthase (CBS), cystathionine γ, the expression changes of cleaving enzyme (CTH), keratin 26 (k26) and keratin associated protein 11-1 (kap11.1). Results show that FGF-5 can suppress the showing of LncRNA in skin cells, lower the showing of target genes CBS and CTH, and promote the showing of related keratin genes k26 and kap11.1. FGF-5 may regulate Cashmere hair growth and development by promoting the showing of related keratin and keratin-associated protein genes (KAPs). This mechanism is achieved by suppressing the showing of the LncRNA gene and also by lowering the showing of the target genes CBS and CTH.


Reference

Andrews M, Visser C and Marle-Köster EV, 2017. Identification of novel variants for KAP 1.1, KAP 8.1 and KAP 13.3 in South African goats. Small Rumin Res, 149: 176-180, doi: 10.1016/j.smallrumres.2017.02.014

Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR et al., 2007. Identification and analysis of functional elements in 1% of the human genome by ENCODE pilot project. Nature, 447: 799-816, doi: 10.1038/nature05874

Cai B, Zheng Y, Ma S, Xing Q, Wang X et al., 2018. Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Mol Med Rep, 17(4): 5477-5483, doi: 10.3892/mmr.2018.8546

Dong Y, Xie M, Jiang Y, Xiao N, Du X et al., 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol, 31(2): 135-141, doi: 10.1038/nbt.2478

Drögemüller C, Rüfenacht S, Wichert B and Leeb T, 2010. Mutations within the FGF5, gene are associated with hair length in cats. Anim Genet, 38(3): 218-221, doi: 10.1111/j.1365-2052.2007.01590.x

Duncan A, Forcina J, Birt A and Townson D, 2012. Estrous cycle-dependent changes of Fas expression in the bovine corpus luteum: influence of keratin 8/18 intermediate filaments and cytokines. Reprod Biol Endocrinol, 10: 90, doi: 10.1186/1477-7827-10-90

Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M et al., 2009. Introducing intermediate filaments: from discovery to disease. J Clin Invest, 119(7): 1763-1771, doi: 10.1172/JCI38339

Hangauer MJ, Vaughn IW and Mcmanus MT, 2013. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet, 9(6): e100356, doi: 10.1371/journal.pgen.1003569

Hébert JM, Rosenquist T, Götz J and Martin GR, 1994. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell, 78(6): 1017-1025, doi: 10.1016/0092-8674(94)90276-3

Hu PF, Guan WJ, Li XC, Zhang WX, Li CL et al., 2013. Study on characteristics of in vitro culture and intracellular transduction of exogenous proteins in fibroblast cell line of Liaoning Cashmere goat. Mol Biol Rep, 40(1): 327-336, doi: 10.1007/s11033-012-2064-3

Huang W, Long NY and Khatib HS, 2012. Genome-wide identification and initial characterization of bovine long non-coding RNAs from EST data. Anim Genet, 43(6): 674-682, doi: 10.1111/j.1365-2052.2012.02325.x

Johnston AP, Naska S, Jones K, Jinno H, Kaplan DR et al., 2013. Sox2-mediated regulation of adult neural crest precursors and skin repair. Stem Cell Rep, 1(1): 38-45, doi: 10.1016/j.stemcr.2013.04.004

Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA et al., 2013. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell, 152(3): 570-583, doi: 10.1016/j.cell.2013.01.003

Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE et al., 2013. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One, 8(1): e53701, doi: 10.1371/journal.pone.0053701

Liffers ST, Maghnouj A, Munding JB, Jackstadt R, Herbrand U et al., 2011. Keratin 23, a novel DPC4/Smad4 target gene which binds 14-3-3ε. BMC Cancer, 11(1): 137, doi: 10.1186/1471-2407-11-137

Lin CM, Liu Y, Huang K, Chen XC, Cai BZ et al., 2014. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem Biophys Res Commun, 453(3): 508-514, doi: 10.1016/j.bbrc.2014.09.119

Meng Y, Wu Z, Yin X, Zhao Y, Chen M et al., 2009. Keratin 18 attenuates estrogen receptor alpha-mediated signaling by sequestering LRP16 in cytoplasm. BMC Cell Biol, 10(1): 1117-1132, doi: 10.1186/1471-2121-10-96

Nanashima N, Akita M, Yamada T, Shimizu T, Nakano H et al., 2008. The hairless phenotype of the Hirosaki hairless rat is due to the deletion of an 80-kb genomic DNA containing five basic keratin genes. J Biol Chem, 283(24): 16868-16875, doi: 10.1074/jbc.M802539200

Pallotti S, Pediconi D, Subramanian D, Molina MG, Antonini M et al., 2018. Evidence of post-transcriptional readthrough regulation in FGF5 gene of alpaca. Gene, 20: 647, doi: 10.1016/j.gene.2018.01.006

Rogers MA, Langbein L, Winter H, Ehmann C, Praetzel S et al., 2002. Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. J Biol Chem, 277(50): 48993-49002, doi: 10.1074/jbc.M206422200

Tong XM and Coulombe PA, 2006. Keratin 17 modulates hair follicle cycling in a TNFα- dependent fashion. Genes Dev, 20: 1353-1364, doi: 10.1101/gad.1387406

Weikard R, Hadlich F and Kuehn C, 2013. Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics, 14(1): 789, doi: 10.1186/1471-2164-14-789

Welle MM and Wiener DJ, 2016. The hair follicle: A comparative review of canine hair follicle anatomy and physiology. Toxicol Pathol, 44(4): 564-574, doi: 10.1177/0192623316631843

Zhu YB, Wang ZY, Yin RH, Jiao Q, Zhao SJ et al., 2018. A lncRNA-H19 transcript from secondary hair follicle of Liaoning Cashmere goat: identification, regulatory network and expression regulated potentially by its promoter methylation. Gene, 641: 78-85, doi: 10.1016/j.gene.2017.10.028