Review Article

Neonatal physiology of Ghungroo pigs: A review

  • Views: 65
  • Pages: 252 - 256
Authors:
*Corresponding Author Email:  joyphy@gmail.com

Received -  09.05.2023, Accepted -  09.07.2023, Published -  01.12.2023

Citation:  Mukherjee J, Das PK, Ghosh PR, Das K, Banerjee D, Lodh S, Das AK, T. Samui and R. Hussain, 2023. Neonatal physiology of Ghungroo pigs: A review. Indian J Anim Health, 62(2): 252-256, doi: https://doi.org/10.36062/ijah.2023.04023

Abstract

Ghungroo pigs are notable local genetic resource for minimal input production systems in the eastern Sub-Himalayan region of India’s West Bengal state. The pre-weaning mortality rate of Ghungroo piglets was lower compared to non-descript native, purebred and crossbred pigs, and the present review aimed to find out some salient features of neonatal Ghungroo piglets for their lower mortality rates. Ghungroo piglets are able to maintain their body temperature upto 2 months without any artificial thermoregulatory support. The hemoglobin concentration of neonatal Ghungroo piglets was higher compared to crossbred piglets. Ghungroo piglets were able to maintain steady blood glucose and total protein concentration till the weaning without affecting liver functions. Increased plasma cortisol soon after weaning provides additional metabolic support to maintain steady glucose level. Ghungroo piglets maintain the total antioxidant status from 4th to 7th week after birth with higher lymphocyte proliferation response.


Reference

Azizi AFN, Uemura R, Omori M, Sueyoshi M and Yasuda M, 2022. Effects of probiotics on growth and immunity of piglets. Animals,12(14): 1786, doi: 10.3390/ani12141786

Baxter EM and Edwards SA, 2018. Piglet mortality and morbidity: inevitable or unacceptable? (Spinka M, Eds), Advances in Pig Welfare, Elsevier, pp 73-100, doi: 10.1016/B978-0-08-101012-9.00003-4

Berthon D, Herpin P, Bertin R, De Marco F and Le Dividich J, 1996. Metabolic changes associated with sustained 48-hr shivering thermogenesis in the newborn pig. Comp Biochem Physiol B Biochem Mol Biol, 114(4): 327-335, doi: 10.1016/0305-0491(96)00044-2

Bianco AC and McAninch EA, 2013. The role of thyroid hormone and brown adipose tissue in energy homoeostasis. Lancet Diabetes Endocrinol, 1(3): 250-258, doi: 10.1016/S2213-8587(13)70069-X

Boro P, Bharali, D, Sarma M, Sonowal M, Saharia J et al., 2021.  Performances of Ghungroo pigs reared under farm condition. J Entomol Zool Stud, 9(1): 2265-2267

Bracke MBM, 2011. Review of wallowing in pigs: description of the behaviour and its motivational basis. Appl Anim Behav, 132(1-2): 1-13, doi: 10.1016/j.applanim.2011.01.002

Butler JE, 1999. Immunoglobulins and immunocytes in animal milks. Mucosal Immunology. (Ogra PL, eds) 2nd edn. Academic Press, New York, pp 1531-1554

Das AK, 2022. Effects of dietary turmeric and lemon essential oil on weaning and post-weaning physiological performances of Ghoongroo piglets. M. V. Sc thesis submitted to the West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India

de Jong I, 2000. Chronic stress parameters in pigs: Indicators of animal welfare? [Thesis fully internal (DIV), University of Groningen]. University of Groningen. Available at: https://chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://research.rug.nl/files/14525520/c1.pdf

Edwards SA and Baxter EM, 2015. Piglet mortality: causes and prevention. (Farmer C, Eds), The gestating and lactating sow. Wageningen Academic Publishers, Wageningen, Netherlands, pp 253-278. Available at: https://pure.sruc.ac.uk/en/publications/piglet-mortality-causes-and-prevention

Edwards SA, Matheson SM and Baxter EM, 2019. Genetic influences on intrauterine growth retardation of piglet and management interventions for low birth weight piglets. (Agricola Española Eds), Nutrition of hyper prolific sows. Novus International Inc, Madrid, Spain, pp 207-235

Evans FD, Christopherson RJ and Aherne FX, 1988. Development of the circadian rhythm of cortisol in the gilt from weaning until puberty. Can J Anim Sci, 68: 1105-1111, doi: 10.4141/cjas88-126

Farmer C and Edwards SA, 2022. Review: Improving the performance of neonatal piglets. Animals, 16(Suppl 2): 100350, doi: 10.1016/j.animal.2021.100350

Gokuldas PP, Tamuli, MK, Mohan NH, Barman K and Sahoo NR, 2015. A comparative analysis of reproductive performance of different pig breeds under intensive management systems in sub-tropical climate. Ind J Anim Sci, 85(9): 1042-1045

Grant K, Worlein J, Meyer J, Novak M, Kroeker R et al., 2017. A longitudinal study of hair cortisol concentrations in Macaca nemestrina mothers and infants. Am J Primatol, 79(2): 1-9, doi: 10.1002/ajp.22591

Hao Y, Xing M and Gu X, 2021. Research progress on oxidative stress and its nutritional regulation strategies in pigs. Animals, 11(5): 1384, doi: 10.3390/ani11051384

Hazorika M, Sarma S, Kalita DJ,  Barua KK and  Tamuli  MK, 2017. Influence of dietary energy and protein levels on growth performance and some blood biochemical indices of growing indigenous (Ghungroo) pigs. Int J Chem Stud, 5(2): 390-395

Heimbürge S, Kanitz E, Tuchscherer A and Otten W, 2020. Within a hair’s breadth – factors influencing hair cortisol levels in pigs and cattle. Gen Comp Endocrinol, 288: 113359, doi: 10.1016/j.ygcen.2019.113359

Kattesh HG, Charles SF, Baumbach GA and Gillespie BE, 1990. Plasma cortisol distribution in the pig from birth to six weeks of age. Biol Neonate, 58(4): 220-226, doi: 10.1159/000243271

Kirkwood RN, Evans FD and Aherne FX, 1987. Influence of age, weight and growth rate on basal LH, growth hormone and cortisol, and estrogen-induced LH release in prepubertal gilts. Can J Anim Sci, 67: 1001-1010, doi: 10.4141/cjas87-105

Kumaresan A, Bujarbaruah KM, Pathak KA, Chhetria B, Das SK et al., 2007. Performance of pigs reared under traditional tribal low input production system and chemical composition of non-conventional tropical plants used as pig feed. Livest Sci, 107(2): 294-298, doi: 10.1016/j.livsci.2006.12.007

Li LA, Yang JJ, Li Y, Lv L, Xie JJ et al., 2016. Effect of weaning age on cortisol release in piglets. Genet Mol Res, 15(2): PMID: 27173313, doi: 10.4238/gmr.15027693

Lkhagvadorj S, 2010. Effects of selection for low residual feed intake and feed restriction on gene expression profiles and thyroid axis in pigs. PhD thesis, Iowa State University, Ames, IA, USA, doi: 10.31274/etd-180810-505

Lodh S, Das PK, Mukherjee J, Naskar S, Banerjee D et al., 2022. Effect of dietary oregano essential oil and milk replacer on physiological status and immunological responses of pre- and post-weaned Ghoongroo piglets. Anim Biotechnol, doi: 10.1080/10495398.2022.2118131

Lossec G, Herpin P and Le Dividich J, 1998. Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming. Exp Physiol, 83(5): 667-678, doi: 10.1113/expphysiol.1998.sp004148

Luo Z, Zhu W, Guo Q, Luo W, Zhang J et al., 2016. Weaning induced hepatic oxidative stress, apoptosis, and aminotransferases through MAPK signaling pathways in piglets. Oxid Med Cell Longev, 2016: 4768541, doi: 10.1155/2016/4768541

Macari M, Zuim SM, Secato ER and Guerreiro JR, 1986. Effect of ambient temperature and thyroid hormone on food intake by pigs. Physiol Behav, 36(6): 1035-1039, doi: 10.1016/0031-9384(86)90476-2

Mayengbam P, Tolenkhomba TC and Ali MA, 2014. Haematological profile of Zovawk- An indigenous pig of Mizoram. Vet World, 7(7): 505-508, doi: 10.14202/vetworld.2014.505-508

Medrano RF and He JH, 2016. Advances in thyroid hormones function relate to animal nutrition. Ann Thyroid Res, 2(1): 45-52

Moeser AJ, Klok CV, Ryan KA, Wooten JG, Little D et al., 2007. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am J Physiol Gastrointest Liver Physiol, 292(1): G173-G181, doi 10.1152/ajpgi.00197.2006

Mondal D, Naskar S and Biswas TK, 2023. Epizootics associated in Ghoongroo pig mortality in an organized farm under hot and humid climatic condition in West Bengal, India. Acta Sci Vet Sci, 5(3): 47-52, doi: 10.31080/ASVS.2023.05.0616

Nath H, Hazorika M, Rajkhowa D, Datta M and Haldar A, 2016. Effect of supplemental heat on mortality rate, growth performance, and blood biochemical profiles of Ghungroo piglets in Indian sub-tropical climate. Vet World, 9(4): 396-402, doi: 10.14202/vetworld.2016.396-402

Neubert E, Scholze C, Kratzsch J and Gürtler H, 1999.  Plasma levels of catecholamine and lipolysis during starvation in growing pigs. J Vet Med Series A, 46(4): 247-253, doi: 10.1046/j.1439-0442.1999.00213.x

Pan S, Misra SK and Kundu MS, 2005. Ghoongroo pig: A new found animal genetic resource of Sub-Himalayan West Bengal, India. Anim Genet Resour Inf, 37: 91-96, doi: 10.1017/S1014233900002005

Panzardi A, Bernardi ML, Mellagi AP, Bierhals T, Bortolozzo FP et al., 2013. Newborn piglet traits associated with survival and growth performance until weaning. Prev Vet  Med,  110(2): 206-213, doi: 10.1016/j.prevetmed.2012.11.016

Paul A, Das S, De A, Debbarma S, Roy J et al., 2020. Physical and reproductive features of Mali: An indigenous pig breed of Tripura with special emphasis to impact of weaning on haemato-biochemical parameters. J Entomol Zool Stud, 8(5): 1531-1536

Paulíková I, Seidel H, Nagy O, Tóthová C and Kovác G, 2011.Concentrations of thyroid hormones in various age categories of ruminants and swine. Acta Vet (Beograd), 61(5-6): 489-503, doi: 10.2298/AVB1106489P

Ribeiro NL, Pimenta Filho EC, De Arandas JKG, Ribeiro MN, Saraiva EP et al., 2015. Multivariate characterization of the adaptive profile in Brazilian and Italian goat population. Small Rumin Res, 123(2-3): 232-237, doi: 10.1016/j.smallrumres.2014.12.010

Ruis MAW, Te Brake JH, Engel B, Ekkel ED, Buist WG et al., 1997. The circadian rhythm of salivary cortisol in growing pigs: effects of age, gender and stress. Physiol Behav, 62(3): 623-630, doi: 10.1016/s0031-9384(97)00177-7

Sahoo NR, 2012. A monograph on Ghungroo pig. A new promise in Indian piggery. ICAR-NRC pig, Rani, Guwahati, India

Salvatore D, Simonides WS, Dentice M, Zavacki AM and Larsen PR, 2013. Thyroid hormones and skeletal muscle- new insights and potential implications. Nat Rev Endocrinol, 10(4): 206-214, doi: 10.1038/nrendo.2013.238

Shin KT, Guo J, Niu YJ and Cui XS, 2018. The toxic effect of aflatoxin B1 on early porcine embryonic development. Theriogenology, 118: 157-163, doi: 10.1016/j.theriogenology.2018.06.002

Sinkora M and Butler JE, 2009. The ontogeny of the porcine immune system. Dev Comp Immunol, 33(3): 273-283, doi: 10.1016/j.dci.2008.07.011

Thorn C, 2010. Hematology of the pig. (Feldman BV, Zinkl JG and Jain NC, Eds). Schalm’s Veterinary Hematology. 6th edn, Lippincott Williams & Wilkins, Philadelphia, pp 843 -850

Todini L, Delgadillo JA, Debenedetti A and Chemineau P, 2006. Plasma total T3 and T4 concentrations in bucks as affected by photoperiod. Small Rumin Res, 65(1-2): 8-13, doi: 10.1016/J.SMALLRUMRES.2005.05.034

Trujillo-Ortega ME, Mota-Rojas D, Olmos-Hernández A, Alonso-Spilsbury M, González M et al., 2007. A study of piglets born by spontaneous parturition under uncontrolled conditions: could this be a naturalistic model for the study of intra partum asphyxia? Acta Biomed, 78(1): 29-35

Yin J, Ren W, Liu G, Duan J, Yang G et al., 2013. Birth oxidative stress and the development of an antioxidant system in newborn piglets. Free Radic Res, 47(12): 1027-1035, doi: 10.3109/10715762.2013.848277

Zavalishina SY, 2018a. Functioning of platelets in milk and vegetable nutrition calves. Res J Pharm Biol Chem Sci, 9(5): 943-949

Zavalishina SY, 2018b. Physiology of vascular hemostasis in newborn calves. Res J Pharm Biol Chem Sci, 9(5): 1037-1044